Question

Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz...

Evaluate C (y + 6 sin(x)) dx + (z2 + 2 cos(y)) dy + x3 dz where C is the curve r(t) = sin(t), cos(t), sin(2t) , 0 ≤ t ≤ 2π. (Hint: Observe that C lies on the surface z = 2xy.) C F · dr =

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate Integral (subscript c) z dx + y dy − x dz, where the curve C...
Evaluate Integral (subscript c) z dx + y dy − x dz, where the curve C is given by c(t) = t i + sin t j + cost k for 0 ≤ t ≤ π.
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = <y sin x, − cos x> is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
Let w(x,y,z) = x^2+y^2+z^2 where x=sin(8t), y=cos(8t) , z= e^t Calculate dw/dt by first finding dx/dt,...
Let w(x,y,z) = x^2+y^2+z^2 where x=sin(8t), y=cos(8t) , z= e^t Calculate dw/dt by first finding dx/dt, dy/dt, and dz/dt and using the chain rule dx/dt = dy/dt= dz/dt= now using the chain rule calculate dw/dt 0=
find dx/dx and dz/dy z^3 y^4 - x^2 cos(2y-4z)=4z
find dx/dx and dz/dy z^3 y^4 - x^2 cos(2y-4z)=4z
Evaluate ∮C(x^3+xy)dx+(cos(y)+x2)dy∮C(x^3+xy)dx+(cos(y)+x^2)dy where C is the positively oriented boundary of the region bounded by  C:0≤x^2+y^2≤16, x≥0,y≥0C:0≤x^2+y^2≤16,x≥0,y≥0
Evaluate ∮C(x^3+xy)dx+(cos(y)+x2)dy∮C(x^3+xy)dx+(cos(y)+x^2)dy where C is the positively oriented boundary of the region bounded by  C:0≤x^2+y^2≤16, x≥0,y≥0C:0≤x^2+y^2≤16,x≥0,y≥0
y = (6 +cos(x))^x Use Logarithmic Differentiation to find dy/dx dy/dx = Type sin(x) for sin(x)sin(x)...
y = (6 +cos(x))^x Use Logarithmic Differentiation to find dy/dx dy/dx = Type sin(x) for sin(x)sin(x) , cos(x) for cos(x)cos(x), and so on. Use x^2 to square x, x^3 to cube x, and so on. Use ( sin(x) )^2 to square sin(x). Use ln( ) for the natural logarithm.
Evaluate double integral Z 2 0 Z 1 y/2 cos(x^2 )dx dy (integral from 0 to...
Evaluate double integral Z 2 0 Z 1 y/2 cos(x^2 )dx dy (integral from 0 to 2)(integral from y/2 to 1) for cos(x^2) dx dy
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin...
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin θ sin φ, z = cos φ where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Hint: Find an equation of the form F(x, y, z) = 0 for this surface by eliminating θ and φ from the equations above. (b) Calculate a parametrization for the tangent plane to the surface at (θ, φ) = (π/3, π/4).
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 2t,    y =...
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 2t,    y = 4t2,    z = 3t3,    0 ≤ t ≤ 1 C
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 2t,    y =...
Evaluate the line integral, where C is the given curve. xyeyz dy,   C: x = 2t,    y = 2t2,    z = 3t3,    0 ≤ t ≤ 1 C