Question

Use the intermediate value theorem to show that there is a root of the given equation...

Use the intermediate value theorem to show that there is a root of the given equation in the specified interval

1. X^4 + x - 3= 0, (1,2)

Homework Answers

Answer #1

Pls,give thumbs up.

Intermediate value theorem states that if a continuous function f(x) on the interval [a,b] has values of opposite sign inside an interval, then there must be some value x=c on the interval (a,b) for which f(c)=0.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Use the Intermediate Value Theorem to show that f(x)=x3+4x2-10 has a real root in the...
1. Use the Intermediate Value Theorem to show that f(x)=x3+4x2-10 has a real root in the interval [1,2]. Then, preform two steps of Bisection method with this interval to find P2.
Use intermediate theorem to show that theer is a root of f(x)=-e^x+3-2x in the interval (0,...
Use intermediate theorem to show that theer is a root of f(x)=-e^x+3-2x in the interval (0, 1)
Use the intermediate value theorem to prove that the equation ln? = ? − square root(?)...
Use the intermediate value theorem to prove that the equation ln? = ? − square root(?) has atleast one solution between ?=2 and ?=3
Use the Intermediate Value Theorem and the Mean Value Theorem to prove that the equation cos...
Use the Intermediate Value Theorem and the Mean Value Theorem to prove that the equation cos (x) = -2x has exactly one real root.
4. Given the function f(x)=x^5+x-1, which of the following is true? The Intermediate Value Theorem implies...
4. Given the function f(x)=x^5+x-1, which of the following is true? The Intermediate Value Theorem implies that f'(x)=1 at some point in the interval (0,1). The Mean Value Theorem implies that f(x) has a root in the interval (0,1). The Mean Value Theorem implies that there is a horizontal tangent line to the graph of f(x) at some point in the interval (0,1). The Intermediate Value Theorem does not apply to f(x) on the interval [0,1]. The Intermediate Value Theorem...
for the equation f(x) = e^x - cos(x) + 2x - 3 Use Intermediate Value Theorem...
for the equation f(x) = e^x - cos(x) + 2x - 3 Use Intermediate Value Theorem to show there is at least one solution. Then use Mean Value Theorem to show there is at MOST one solution
Using the Intermediate and Mean Value Theorems, show that the equation x^3 - 15x + c...
Using the Intermediate and Mean Value Theorems, show that the equation x^3 - 15x + c = 0 has at most one root in the interval [−2, 2]. Show step by step, please!
Use the Intermediate Value Theorem to show that the function has at least one zero in...
Use the Intermediate Value Theorem to show that the function has at least one zero in the interval [a, b]. (You do not have to approximate the zero.) f(x) = x5 − 8x + 3,     [−2, −1] f(-2)= f(-1)= Because f(−2) is ??? positive negative and f(−1) is  ??? positive negative , the function has a zero in the interval [−2, −1].
1.Determine whether the intermediate value theorem guarantees that the function has a zero on the given...
1.Determine whether the intermediate value theorem guarantees that the function has a zero on the given interval. f (x) = x3 - 8x2 + 14x + 9; [1, 2] yes or no? 2. Use synthetic division and the remainder theorem to determine if [x-(3-2i)] is a factor of f(x)=x2-6x+13 yes or no? 3. Use the factor theorem to determine if the given binomial is a factor of f (x). f (x) = x4+ 8x3+ 11x2 - 11x + 3; x...
Continuity and the derivative: 1A) Show that there exists a real root of the equation in...
Continuity and the derivative: 1A) Show that there exists a real root of the equation in this interval: cos(root x) = e^x-2 [0.1] 1B) If f(x) is a continuous function (on the reals) that has only one root at x=2, and if f(4)>0, can f(3)<0? Explain.