Question

The solid bounded below the sphere ? = 1 and above by the Cardioid revolution ?...

The solid bounded below the sphere ? = 1 and above by the Cardioid revolution ? = 1 + cos?. a) Find the volume of the solid. b) Set up the cylindrical integral for finding the average value of function ?(?,?, ?) = 2? over the solid. Do Not evaluate it.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Lets consider the solid bounded above a sphere x^2+y^2+z^2=2 and below by the paraboloid z=x^2+y^2. Express...
Lets consider the solid bounded above a sphere x^2+y^2+z^2=2 and below by the paraboloid z=x^2+y^2. Express the volume of the solid as a triple integral in cylindrical coordinates. (Please show all work clearly) Then evaluate the triple integral.
Write down a cylindrical coordinates integral that gives the volume of the solid bounded above by...
Write down a cylindrical coordinates integral that gives the volume of the solid bounded above by z = 50 − x^2 − y^2 and below by z = x^2 + y^2 . Evaluate the integral. (Hint: use the order of integration dz dr dθ.)
Please answer all question explain. thank you. (1)Consider the region bounded by y= 5- x^2 and...
Please answer all question explain. thank you. (1)Consider the region bounded by y= 5- x^2 and y = 1. (a) Compute the volume of the solid obtained by rotating this region about the x-axis. (b) Set up the integral for the volume of the solid obtained by rotating this region about the line x = −3. No need to evaluate the integral, just set it up. (2) (a) Find the exact (no calculator approximation) average value of the function f(x)...
a)   Sketch the solid in the first octant bounded by: z = x^2 + y^2 and...
a)   Sketch the solid in the first octant bounded by: z = x^2 + y^2 and x^2 + y^2 = 1, b)   Given the volume density which is proportional to the distance from the xz-plane, set up integrals               for finding the mass of the solid using cylindrical coordinates, and spherical coordinates. c)   Evaluate one of these to find the mass.
Set up (Do Not Evaluate) a triple integral that yields the volume of the solid that...
Set up (Do Not Evaluate) a triple integral that yields the volume of the solid that is below        the sphere x^2+y^2+z^2=8 and above the cone z^2=1/3(x^2+y^2) a) Rectangular coordinates        b) Cylindrical coordinates        c)   Spherical coordinates
The region is bounded by y=2−x^2 and y=x. (a) Sketch the region. (b) Find the area...
The region is bounded by y=2−x^2 and y=x. (a) Sketch the region. (b) Find the area of the region. (c) Use the method of cylindrical shells to set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region about the line x = −3. (d) Use the disk or washer method to set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region about...
Let E be the solid that lies in the first octant, inside the sphere x2 +...
Let E be the solid that lies in the first octant, inside the sphere x2 + y2 + z2 = 10. Express the volume of E as a triple integral in cylindrical coordinates (r, θ, z), and also as a triple integral in spherical coordinates (ρ, θ, φ). You do not need to evaluate either integral; just set them up.
The region is bounded by y = 2 − x^ 2 and y = x Use...
The region is bounded by y = 2 − x^ 2 and y = x Use the method of cylindrical shells to set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region about the line x = −3
draw the solid bounded above z=9/2-x2-y2 and bounded below x+y+z=1. Find the volume of this solid.  
draw the solid bounded above z=9/2-x2-y2 and bounded below x+y+z=1. Find the volume of this solid.  
3. Find the volume of the solid of revolution. The region is bounded by y= 4x...
3. Find the volume of the solid of revolution. The region is bounded by y= 4x and y = x^3 and x ≥ 0. a) Make a sketch. b) About the x axis (disk/washer method). c) About the x axis (cylindrical shells). d) About the y axis (disk/washer method). e) About the y axis (cylindrical shells).