Question

The region is bounded by y=2−x^2 and y=x. (a) Sketch the region. (b) Find the area of the region. (c) Use the method of cylindrical shells to set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region about the line x = −3. (d) Use the disk or washer method to set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region about the line y = 3.

Answer #1

The region is bounded by y = 2 − x^ 2 and y = x
Use the method of cylindrical shells to set up, but do not
evaluate, an integral for the volume of the solid obtained by
rotating the region about the line x = −3

Let R be the region of the plane bounded by y=lnx and the x-axis
from x=1 to x= e. Draw picture for each
a) Set up, but do not evaluate or simplify, the definite
integral(s) that computes the volume of the solid obtained by
rotating the region R about they-axis using the disk/washer
method.
b) Set up, but do not evaluate or simplify, the definite
integral(s) that computes the volume of the solid obtained by
rotating the region R about...

a.) Let S be the solid obtained by rotating the region bounded
by the curves y=x(x−1)^2 and y=0 about the y-axis. If you sketch
the given region, you'll see that it can be awkward to find the
volume V of S by slicing (the disk/washer method). Use cylindrical
shells to find V
b.) Consider the curve defined by the equation xy=12. Set up an
integral to find the length of curve from x=a to x=b. Enter the
integrand below

Consider the region bounded by y=sqrt(x) and y=x^3
a) Find the area of this region
b) Find the volume of the solid generated by rotating this
region about the x-axis using washer
c) Find the volume of the solid generated by rotating this
region about the horizontal line y=3 using shells

Let R be the region bounded by y = ln(x), the x-axis, and the
line x = π.
a.Usethecylindrical shell method to write a deﬁnite integral
(BUTDONOTEVALUATEIT) that gives the volume of the solid obtained by
rotating R around y-axis
b. Use the disk (washer) method to write a deﬁnite integral (BUT
DO NOT EVALUATE IT) that gives the volume of the solid obtained by
rotating R around x-axis.

1. The region bounded by y=x8 and y=sin(πx/2) is
rotated about the line x=−7.
Using cylindrical shells, set up an integral for the volume of the
resulting solid.
2.The region bounded by y=9/(1+x2), y=0, x=0 and x=8
is rotated about the line x=8.
Using cylindrical shells, set up an integral for the volume of the
resulting solid.

Let R be the region in enclosed by y=1/x, y=2, and x=3. a)
Compute the volume of the solid by rotating R about the x-axis. Use
disk/washer method. b) Give the definite integral to compute the
area of the solid by rotating R about the y-axis. Use shell
method. Do not evaluate the integral.

Find the volume V of the solid obtained by rotating the
region bounded by the given curves about the specified line.
y = 2 + sec(x),
−π
3
≤ x ≤
π
3
, y = 4; about
y = 2
V =
Sketch the region.
Sketch the solid, and a typical disk or washer.

Problem (9). Let R be the region enclosed by y = 2x, the x-axis,
and x = 2. Draw the solid and set-up an integral (or a sum of
integrals) that computes the volume of the solid obtained by
rotating R about:
(a) the x-axis using disks/washers
(b) the x-axis using cylindrical shells
(c) the y-axis using disks/washer
(d) the y-axis using cylindrical shells
(e) the line x = 3 using disks/washers
(f) the line y = 4 using cylindrical...

Find the volume of the solid obtained by rotating the region
bounded by the given curves about the specified line, using the
disk/washer method. Sketch the region, the solid, and a typical
disk or washer.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 6 minutes ago

asked 6 minutes ago

asked 21 minutes ago

asked 38 minutes ago

asked 45 minutes ago

asked 46 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago