Question

The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test...

The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test whether the true average percentage is 5.5 for a particular production facility, 16 independently obtained samples are analyzed. Suppose that the percentage of SiO2 in a sample is normally distributed with σ = 0.32 and that x = 5.23. (Use α = 0.05.)

(b) If the true average percentage is μ = 5.6 and a level α = 0.01 test based on n = 16 is used, what is the probability of detecting this departure from H0? (Round your answer to four decimal places.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test...
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test whether the true average percentage is 5.5 for a particular production facility, 16 independently obtained samples are analyzed. Suppose that the percentage of SiO2 in a sample is normally distributed with σ = 0.32 and that x = 5.21. (Use α = 0.05.) (a) Does this indicate conclusively that the true average percentage differs from 5.5? State the appropriate null and alternative hypotheses. H0:...
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test...
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test whether the true average percentage is 5.5 for a particular production facility, 16 independently obtained samples are analyzed. Suppose that the percentage of SiO2 in a sample is normally distributed with ? = 0.26 and that x = 5.25. (a) Find the test statistic (b) If the true average percentage is ? = 5.6 and a level ? = 0.01 test based on n...
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test...
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test whether the true average percentage is 5.5 for a particular production facility, 16 independently obtained samples are analyzed. Suppose that the percentage of SiO2 in a sample is normally distributed with σ = 0.32 and that x = 5.21. (Use α = 0.05.) (a) Does this indicate conclusively that the true average percentage differs from 5.5? State the appropriate null and alternative hypotheses. H0:...
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test...
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test whether the true average percentage is 5.5 for a particular production facility, 16 independently obtained samples are analyzed. Suppose that the percentage of SiO2 in a sample is normally distributed with σ = 0.32 and that x = 5.22. (Use α = 0.05.) * Does this indicate conclusively that the true average percentage differs from 5.5? State the appropriate null and alternative hypotheses. A-)...
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test...
The desired percentage of SiO2 in a certain type of aluminous cement is 5.5. To test whether the true average percentage is 5.5 for a particular production facility, 16 independently obtained samples are analyzed. Suppose that the percentage of SiO2 in a sample is normally distributed with σ = 0.32 and that x = 5.22. (Use α = 0.05.) (a) Does this indicate conclusively that the true average percentage differs from 5.5? State the appropriate null and alternative hypotheses. H0:...
The desired percentage of SiO2 in aluminous cement is 5.5. To test whether the true average...
The desired percentage of SiO2 in aluminous cement is 5.5. To test whether the true average percentage is 5.5 for a certain production facility, n = 16 independently obtained samples were analyzed and it was found that ¯x = 5.25. Suppose that the percentage of Si O2 found in the sample is normally distributed with σ = 0.3 and. (a) Does this indicate that the true average percentage differs from 5.5? Use significance level α = 0.01 (b) Repeat the...
A mixture of pulverized fuel ash and Portland cement to be used for grouting should have...
A mixture of pulverized fuel ash and Portland cement to be used for grouting should have a compressive strength of more than 1300 KN/m2. The mixture will not be used unless experimental evidence indicates conclusively that the strength specification has been met. Suppose compressive strength for specimens of this mixture is normally distributed with σ = 65. Let μ denote the true average compressive strength. (a) What are the appropriate null and alternative hypotheses? H0: μ = 1300 Ha: μ...
A mixture of pulverized fuel ash and Portland cement to be used for grouting should have...
A mixture of pulverized fuel ash and Portland cement to be used for grouting should have a compressive strength of more than 1300 KN/m2. The mixture will not be used unless experimental evidence indicates conclusively that the strength specification has been met. Suppose compressive strength for specimens of this mixture is normally distributed with σ = 67. Let μ denote the true average compressive strength. (a) What are the appropriate null and alternative hypotheses? H0: μ > 1300 Ha: μ...
A mixture of pulverized fuel ash and Portland cement to be used for grouting should have...
A mixture of pulverized fuel ash and Portland cement to be used for grouting should have a compressive strength of more than 1300 KN/m2. The mixture will not be used unless experimental evidence indicates conclusively that the strength specification has been met. Suppose compressive strength for specimens of this mixture is normally distributed with σ = 60. Let μ denote the true average compressive strength. (a) What are the appropriate null and alternative hypotheses? (Choose of the following) 1. H0:...
A mixture of pulverized fuel ash and Portland cement to be used for grouting should have...
A mixture of pulverized fuel ash and Portland cement to be used for grouting should have a compressive strength of more than 1300 KN/m2. The mixture will not be used unless experimental evidence indicates conclusively that the strength specification has been met. Suppose compressive strength for specimens of this mixture is normally distributed with σ = 59.Let μ denote the true average compressive strength. (a) What are the appropriate null and alternative hypotheses? (b) Let X denote the sample average...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT