Question

The time between the arrivals of electronic messages at your computer is exponentially distributed with a...

The time between the arrivals of electronic messages at your computer is exponentially distributed with a mean of two hours.


a) What is the probability that you do not receive a message during a two-hour period? Solve by using exponential distribution.

b) If you have not had a message in the last four hours, what is the probability that you do not receive a message in the next two hours?

Homework Answers

Answer #1

Answer:

Given that:

The time between the arrivals of electronic messages at your computer is exponentially distributed with a mean of two hours.

let X denote the time until a message received, Then X is an Exponential random variable and \

a) What is the probability that you do not receive a message during a two-hour period? Solve by using exponential distribution.

b) If you have not had a message in the last four hours, what is the probability that you do not receive a message in the next two hours?

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The time between the arrivals of electronic messages at your computer, ?, is exponentially distributed with...
The time between the arrivals of electronic messages at your computer, ?, is exponentially distributed with a mean of two hours. a) What is the probability that you do not receive a message during a two-hour period? b) If you have not had a message in the last four hours, what is the probability that you do not receive a message in the next two hours? c) What is the expected time between your fifth and sixth messages? d) Find...
The time between arrivals of taxis at a busy intersection is exponentially distributed with a mean...
The time between arrivals of taxis at a busy intersection is exponentially distributed with a mean of 10 minutes. (i) What is the probability that you wait longer than one hour for a taxi? (ii) Suppose that you have already been waiting for one hour for a taxi. What is the probability that one arrives within the next 10 minutes? (iii) Determine x such that the probability that you wait more than x minutes is 0.10. (iv) Determine x such...
Arrivals at a bank are Poisson distributed with a mean arrival rate of two arrivals every...
Arrivals at a bank are Poisson distributed with a mean arrival rate of two arrivals every five minutes. a) What is the probability of exactly two arrivals in the next four minutes? b) Assuming that the previous arrival came to the bank 10 minutes ago (with no arrivals since then), what is the probability that the time to next arrival will be greater than 1 minute?
Let X = the time between two successive arrivals at the drive-up window of a local...
Let X = the time between two successive arrivals at the drive-up window of a local bank. If X has an exponential distribution with λ = 1/3 , compute the following: a. If no one comes to the drive-up window in the next 15 minutes (starting now), what is the chance that no one will show up during the next 20 minutes (starting now)? b. Find the probability that two people arrive in the next minute. c. How many people...
The time between arrivals at a toll booth follows an exponential distribution with a mean time...
The time between arrivals at a toll booth follows an exponential distribution with a mean time between arrivals of 2 minutes. What is the probability that the time between two successive arrivals will be less than 3 minutes? What is the probability that the time will be between 3 and 1 minutes?
The time between arrivals of vehicles at a particular intersection follows an exponential probability distribution with...
The time between arrivals of vehicles at a particular intersection follows an exponential probability distribution with a mean of 10 seconds. (a) Sketch this exponential probability distribution. (b) What is the probability that the arrival time between vehicles is 10 seconds or less? (Round your answer to four decimal places.) (c) What is the probability that the arrival time between vehicles is 4 seconds or less? (Round your answer to four decimal places.) (d) What is the probability of 30...
A battery has a time to full discharge that is exponentially distributed with a mean of...
A battery has a time to full discharge that is exponentially distributed with a mean of 30 hours. What is the probability that the battery will last longer than 30 hours? A.) 0 B.) 0.368 C.) 0.50 D.) 0.632
At a 24-hour computer repair facility broken-down computers arrive at an average rate of 3 per...
At a 24-hour computer repair facility broken-down computers arrive at an average rate of 3 per day, Poisson distributed. What is the probability that on a given day no computers arrive for repair? What is the probability that on a given day at least 3 computers arrive for repair? What is the distribution of the time between arrivals of computers to this facility and what is the average time between arrivals? On one particular day no computer has arrived for...
Suppose that the time between arrivals of customers at a bank during the​ noon-to-1 p.m. hour...
Suppose that the time between arrivals of customers at a bank during the​ noon-to-1 p.m. hour has a uniform distribution between 0 and 30 seconds. a. What is the probability that the time between the arrivals of two customers will be less than 14 ​seconds? b. What is the probability that the time between the arrivals of two customers will be between 11 and 19 ​seconds? c. What is the probability that the time between the arrivals of two customers...
Let X = the time between two successive arrivals at the drive-up window of a local...
Let X = the time between two successive arrivals at the drive-up window of a local bank. Suppose that X has an exponential distribution with an average time between arrivals of 4 minutes. a. A car has just left the window. What is probability that it will take more than 4 minutes before the next drive-up to the window? b. A car has just left the window. What is the probability that it will take more than 5 minutes before...