Question

Consider the following the density function: f(x) = 2(1 – x) 0 < x < 1...

Consider the following the density function:

f(x) = 2(1 – x) 0 < x < 1

0 elsewhere

a. What is the expected value of X?

b. What is the variance of X?

c. What is F(x), the CDF of X.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the joint density function f (x, y) = 1 if 0<= x<= 1; 0<=y<= 1....
Consider the joint density function f (x, y) = 1 if 0<= x<= 1; 0<=y<= 1. [0 elsewhere] a) Obtain the probability density function of the v.a Z, where Z = X^2. b) Obtain the probability density function of v.a W, where W = X*Y^2. c) Obtain the joint density function of Z and W, that is, g (Z, W)
The following function is a legitimate density function: f(x)=2*(3x + 4)/33 for -1 < x <...
The following function is a legitimate density function: f(x)=2*(3x + 4)/33 for -1 < x < 2 and 0 else. Please include at least 3 decimal places for all parts in this question. a) Find P(1 ≤ x < 4). b) What is the expected value? c) Determine the cdf. d) Find the 50 th percentile.
Consider a continuous random variable X with the probability density function f X ( x )...
Consider a continuous random variable X with the probability density function f X ( x ) = |x|/C , – 2 ≤ x ≤ 1, zero elsewhere. a) Find the value of C that makes f X ( x ) a valid probability density function. b) Find the cumulative distribution function of X, F X ( x ).
6. A continuous random variable X has probability density function f(x) = 0 if x< 0...
6. A continuous random variable X has probability density function f(x) = 0 if x< 0 x/4 if 0 < or = x< 2 1/2 if 2 < or = x< 3 0 if x> or = 3 (a) Find P(X<1) (b) Find P(X<2.5) (c) Find the cumulative distribution function F(x) = P(X< or = x). Be sure to define the function for all real numbers x. (Hint: The cdf will involve four pieces, depending on an interval/range for x....
7. For the random variable x with probability density function: f(x) = {1/2 if 0 <...
7. For the random variable x with probability density function: f(x) = {1/2 if 0 < x< 1, x − 1 if 1 ≤ x < 2} a. (4 points) Find the CDF function. b. (3 points) Find p(x < 1.5). c. (3 points) Find P(X<0.5 or X>1.5)
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and...
A continuous random variable X has the following probability density function F(x) = cx^3, 0<x<2 and 0 otherwise (a) Find the value c such that f(x) is indeed a density function. (b) Write out the cumulative distribution function of X. (c) P(1 < X < 3) =? (d) Write out the mean and variance of X. (e) Let Y be another continuous random variable such that  when 0 < X < 2, and 0 otherwise. Calculate the mean of Y.
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5...
1. Find k so that f(x) is a probability density function. k= ___________ f(x)= { 7k/x^5 0 1 < x < infinity elsewhere 2. The probability density function of X is f(x). F(1.5)=___________ f(x) = {(1/2)x^3 - (3/8)x^2 0 0 < x < 2 elsewhere   3. F(x) is the distribution function of X. Find the probability density function of X. Give your answer as a piecewise function. F(x) = {3x^2 - 2x^3 0 0<x<1 elsewhere
The density function of random variable X is given by f(x) = 1/4 , if 0...
The density function of random variable X is given by f(x) = 1/4 , if 0 Find P(x>2) Find the expected value of X, E(X). Find variance of X, Var(X). Let F(X) be cumulative distribution function of X. Find F(3/2)
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise...
1. Suppose a random variable X has a probability density function f(x)= {cx^2 -1<x<1, {0 otherwise where c > 0. (a) Determine c. (b) Find the cdf F (). (c) Compute P (-0.5 < X < 0.75). (d) Compute P (|X| > 0.25). (e) Compute P (X > 0.75 | X > 0). (f) Compute P (|X| > 0.75| |X| > 0.5).
Let X be a random variable with probability density function given by f(x) = 2(1 −...
Let X be a random variable with probability density function given by f(x) = 2(1 − x), 0 ≤ x ≤ 1,   0, elsewhere. (a) Find the density function of Y = 1 − 2X, and find E[Y ] and Var[Y ] by using the derived density function. (b) Find E[Y ] and Var[Y ] by the properties of the expectation and the varianc
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT