1, Determine μx and σx from the given parameters of the population and sample size.
μ= 80, σ= 27, n= 81
ux =
σx =
2, A certain flight arrives on time 8080 percent of the time. Suppose 117117 flights are randomly selected. Use the normal approximation to the binomial to approximate the probability that
(a) exactly 103 flights are on time.
(b) at least 103 flights are on time.
(c) fewer than 99 flights are on time.
(d) between 99 and 107, inclusive are on time.
a) P(103)=. (Round to four decimal places as needed.)
(b) P(X≥103)= (Round to four decimal places as needed.)
(c) P(X<99)=. (Round to four decimal places as needed.)
(d) P(99≤X≤107)=. (Round to four decimal places as needed.)
3,The number of chocolate chips in a bag of chocolate chip cookies is approximately normally distributed with a mean of 1263 chips and a standard deviation of 118 chips.
(a) The 27th percentile for the number of chocolate chips in a bag of chocolate chip cookies is_____ chocolate chips.
(Round to the nearest whole number as needed.)
(b) The number of chocolate chips in a bag that make up the middle 95% of bags is ___ to ___ chocolate chips.
(Round to the nearest whole number as needed. Use ascending order.)
(c) The interquartile range of the number of chocolate chips is___.
(Round to the nearest whole number as needed.)
Suppose a simple random sample of size n =1000 is obtained from a population whose size is N=1,500,000 and whose population proportion with a specified characteristic is p=0.49. Complete parts (a) through (c) below.
(a) Describe the sampling distribution of p^.
A.
Approximately normal, mu Subscript ModifyingAbove p with caretμpequals=0.490.49 and sigma Subscript ModifyingAbove p with caretσpalmost equals≈0.00040.0004
B.
Approximately normal, mu Subscript ModifyingAbove p with caretμpequals=0.490.49 and sigma Subscript ModifyingAbove p with caretσpalmost equals≈0.01580.0158
C.
Approximately normal, mu Subscript ModifyingAbove p with caretμpequals=0.490.49 and sigma Subscript ModifyingAbove p with caretσpalmost equals≈0.00020.0002
(b) What is the probability of obtaining xequals=510510 or more individuals with the characteristic?
P(xgreater than or equals≥510510)equals=nothing (Round to four decimal places as needed.)
(c) What is the probability of obtaining xequals=450450 or fewer individuals with the characteristic?
P(xless than or equals≤450450)equals=nothing (Round to four decimal places as needed.)
Please try to answear all part
Get Answers For Free
Most questions answered within 1 hours.