Question

Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2)....

Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2).

Please derive the joint distribution of (U, V ) by using the Jacobian matrix method.

Homework Answers

Answer #1

please rate me high.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X +...
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X + Y and V = Y . (a) Find the joint PDF of U and V (b) Find the marginal PDF of U.
Let X and Y independent random variables with U distribution (−1,1). Using the Jacobian method, determine...
Let X and Y independent random variables with U distribution (−1,1). Using the Jacobian method, determine the joint distribution of Z=X-Y and W= X+Y.
Let X ~ N (1, 2^2) and Y ~ N (2, 2^2). Suppose that X and...
Let X ~ N (1, 2^2) and Y ~ N (2, 2^2). Suppose that X and Y are independent. Let U = X + Y and V = X ̶Y. Show that U and V are independent normal random variables. Find the distribution of each of them.
Let X and Y be i.i.d and follow a uniform distribution in [0,1]. Find the joint...
Let X and Y be i.i.d and follow a uniform distribution in [0,1]. Find the joint distribution of(U,V) where U=X+Y and V =X/Y.
(9) Let X and Y be iid Exp(1) RV’s. Define U = X / (X+Y) and...
(9) Let X and Y be iid Exp(1) RV’s. Define U = X / (X+Y) and V = X + Y . Show your Work. (a) Derive the joint density for (U, V ). (b) What is the marginal distribution for U? (c) Find the conditional mean E(X | V = 2). (d) Are U and V independent? Explain why
Let U and V be two independent standard normal random variables, and let X = |U|...
Let U and V be two independent standard normal random variables, and let X = |U| and Y = |V|. Let R = Y/X and D = Y-X. (1) Find the joint density of (X,R) and that of (X,D). (2) Find the conditional density of X given R and of X given D. (3) Find the expectation of X given R and of X given D. (4) Find, in particular, the expectation of X given R = 1 and of...
Let X and Y be independent and identical uniform distribution on [0,1]. Let Z=min(X, Y). Find...
Let X and Y be independent and identical uniform distribution on [0,1]. Let Z=min(X, Y). Find E[Y-Z]. What is the probability Y=Z?
Use the Chain Rule to evaluate the partial derivative ∂g/∂u at the point (u,v)=(0,1), where g(x,y)=x^2−y^2,...
Use the Chain Rule to evaluate the partial derivative ∂g/∂u at the point (u,v)=(0,1), where g(x,y)=x^2−y^2, x=e^3ucos(v), y=e^3usin(v). (Use symbolic notation and fractions where needed.)
Assume X and. Y are. 2. independent variables that follow the standard uniform distribution i.e. U(0,1)...
Assume X and. Y are. 2. independent variables that follow the standard uniform distribution i.e. U(0,1) Let Z = X + Y Find the PDF of Z, fZ(z) by first obtaining the CDF FZ(z) using the following steps: (a) Draw an x-y axis plot, and sketch on this plot the lines z=0.5, z=1, and z=1.5 (remembering z=x+y) (b) Use this plot to obtain the function which describes the area below the lines for z = x + y in terms...
Let y ∼ MV N(µ, V ) be a n × 1 random vector and suppose...
Let y ∼ MV N(µ, V ) be a n × 1 random vector and suppose V is nonsingular. Find A and b such that Ay + b is an n-length vector of independent standard normals. Please use Linear Algebra method
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT