Question

Define the variance of a random variable X to be V (X) = E[(X − E[X])2]....

Define the variance of a random variable X to be V (X) = E[(X − E[X])2]. Find the mean
and variance of X if X ∼ Dunif({1, 3, 5, 7, 9}), by hand.

Homework Answers

Answer #1

TOPIC:Mean and variance of discrete uniform distribution.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X be a random variable with mean μ and variance σ^2. Define Y=(X-μ)/σ. What is...
Let X be a random variable with mean μ and variance σ^2. Define Y=(X-μ)/σ. What is the variance of Y?
For a family with 4 kids define a random variable X to be equal to the...
For a family with 4 kids define a random variable X to be equal to the number of boys in the family. 1. Describe and plot probability density and cumulative probability functions. 2. Find the mean and variance of X. 3. Compute and show on the plots the probability of having at least two girls.
X is a Gaussian random variable with variance 9. It is known that the mean of...
X is a Gaussian random variable with variance 9. It is known that the mean of X is positive. It is also known that the probability P[X^2 > a] (using the standard Q-function notation) is given by P[X^2 > a] = Q(5) + Q(3). (a) [13 pts] Find the values of a and the mean of X (b) [12 pts] Find the probability P[X^4 -6X^2 > 27]
i) A random variable X has a binomial distribution with mean 6 and variance 3.6: Find...
i) A random variable X has a binomial distribution with mean 6 and variance 3.6: Find P(X = 4). ii) Let X equal the larger outcome when a pair of four-sided dice is rolled. The pmf of X is f(x) = (2x - 1/ 16) ; x = 1; 2; 3; 4. Find the mean, variance and standard deviation of X. iii) Let μ and σ^2 denote the mean and variance of the random variable able X. Determine E [(X...
Let X be a random variable with a mean of 9 and a variance of 16....
Let X be a random variable with a mean of 9 and a variance of 16. Let Y be a random variable with a mean of 10 and a variance of 25. Suppose the population correlation coefficient between random variables X and Y is -0.4. a) Find the mean of the random variable W = 3X - 5Y. b) Find the standard deviation of the random variable Z = X + Y
X and Y are independent random variables. The mean and variance of X are 2 and...
X and Y are independent random variables. The mean and variance of X are 2 and 1 respectively. The mean and variance of Y are 3 and 2 respectively. Which of the statements below about the random variable X-Y is true? a. X-Y~Normal(-1,1) b. X-Y~Normal(1,3) c. X-Y has mean -1 and variance 3. d. X-Y has mean 5 and variance 3.
Q6/   Let X be a discrete random variable defined by the following probability function x 2...
Q6/   Let X be a discrete random variable defined by the following probability function x 2 3 7 9 f(x) 0.15 0.25 0.35 0.25 Give   P(4≤  X < 8) ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ Q7/ Let X be a discrete random variable defined by the following probability function x 2 3 7 9 f(x) 0.15 0.25 0.35 0.25 Let F(x) be the CDF of X. Give  F(7.5) ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ Q8/ Let X be a discrete random variable defined by the following probability function : x 2 6...
Using the expected value and variance of a random variable X~Bin(n,p), find an expression for E(X^2)...
Using the expected value and variance of a random variable X~Bin(n,p), find an expression for E(X^2) in terms of n and p.
Let X be a Gaussian random variable with mean μ and variance σ^2. Compute the following...
Let X be a Gaussian random variable with mean μ and variance σ^2. Compute the following moments: Remember that we use the terms Gaussian random variable and normal random variable interchangeably. (Enter your answers in terms of μ and σ.) E[X^2]= E[X^3]= E[X^4]= Var(X^2)= Please give the detail process of proof.
3) Four statistically independent random variables, X, Y, Z, W have means of 2, -1, 1,...
3) Four statistically independent random variables, X, Y, Z, W have means of 2, -1, 1, -2 respectively, variances of X and Z are 9 and 25 respectively, mean-square values of Y and W are 5 and 20 respectively. Define random variable V as: V = 2X - Y + 3Z - 2W, find the mean-square value of V (with minimum math).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT