Question

A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1500 hours. A homeowner...

A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1500 hours. A homeowner selects 40 bulbs and finds the mean lifetime to be 1490 hours with a population standard deviation of 80 hours. Test the manufacturers claim. Use a=0.05. Show graph as well.

Homework Answers

Answer #1

Solution:

Here, we have to use one sample z test for the population mean.

The null and alternative hypotheses are given as below:

Null hypothesis: H0: the mean lifetime of its fluorescent bulbs is 1500 hours.

Alternative hypothesis: Ha: the mean lifetime of its fluorescent bulbs is not 1500 hours.

H0: µ = 1500 versus Ha: µ ≠ 1500

This is a two tailed test.

The test statistic formula is given as below:

Z = (Xbar - µ)/[σ/sqrt(n)]

From given data, we have

µ = 1500

Xbar = 1490

σ = 80

n = 40

α = 0.05

Critical value = -1.96 and 1.96

(by using z-table or excel)

Z = (1490 – 1500)/[80/sqrt(40)]

Z = -0.7906

P-value = 0.4292

(by using Z-table)

P-value > α = 0.05

So, we do not reject the null hypothesis

There is sufficient evidence to conclude that the mean lifetime of its fluorescent bulbs is 1500 hours.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1500 hours. A...
1. A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1500 hours. A homeowner selects 40 bulbs and finds the mean lifetime to be 1480 hours with a population standard deviation of 80 hours. Test the manufacturer's claim. Use alpha equal to 0.05. State the sample mean and the population standard deviation. 2. Using problem in number 1. Choose the correct hypotheses. 3. Using the problem in number 1. State the critical value(s). 4. Using the problem...
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1200 hours....
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1200 hours. A homeowner randomly selects 35 of these batteries and finds the mean lifetime to be 1180 hours with a standard deviation of 80 hours. Test the manufacturers claim. Use α = 0.05.
A manufacturer claims that the mean lifetime of its lithium batteries is 902 hours. A homeowner...
A manufacturer claims that the mean lifetime of its lithium batteries is 902 hours. A homeowner selects 25 of these batteries and finds the mean lifetime to be 881 hours with a standard deviation of 83 hours. Test the manufacturer's claim. Use α = 0.05.
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1500 hours....
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1500 hours. A homeowner selects 25 of these batteries and finds the mean lifetime to be 1480 hours with a standard deviation of 80 hours. Test the manufacturer's claim. Use α = 0.10. A. P-value = 0.112 > 0.10; do not reject H0; There is not enough evidence support the claim, that mean is less than 1500. B. P-value = 0.112 > 0.05; do not reject...
Identify the null hypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final...
Identify the null hypothesis, alternative hypothesis, test statistic, P-value, conclusion about the null hypothesis, and final conclusion that addresses the original claim. A manufacturer claims that the mean lifetime of its fluorescent bulbs is 1000 hours. A homeowner selects 25 bulbs and finds the mean lifetime to be 980 hours with a standard deviation of 80 hours. If α = 0.05, test the manufacturer's claim.
A manufacturer claims that the mean life time of its lithium batteries is 1500 hours ....
A manufacturer claims that the mean life time of its lithium batteries is 1500 hours . A home owner selects 30 of these batteries and finds the mean lifetime to be 1470 hours with a standard deviation of 80 hours. Test the manufacturer's claim. Use=0.05. Round the test statistic to the nearest thousandth. a) Hypothesis: b)Critical value (t critical): c)Test statistic (tstat) and the decision about the test statistic:(reject or fail to reject Ho): d)Conclusion that results from the decision...
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1520 hours....
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1520 hours. A homeowner selects 27 of these batteries and finds the mean lifetime to be 1498 hours with a standard deviation of 76 hours. Test the manufacturer's claim. Use α = 0.10. A. P-value = 0.112 > 0.02; do not reject H0; There is not enough evidence support the claim, that mean is less than 1500. B. P-value = 0.072 > 0.05; do not reject...
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1120 hours....
A manufacturer claims that the mean lifetime of its lithium batteries is less than 1120 hours. A homeowner selects 25 of these batteries and finds the mean lifetime to be 1100 hours with a standard deviation of 75 hours. Test the manufacturer's claim. Use α = 0.01. A. P-value = 0.110 > 0.01; do not reject H0; There is not enough evidence support the claim, that mean is less than 1120. B. P-value = 0.097 > 0.01; do not reject...
A manufacturer receives an order for fluorescent light bulbs. The order requires that the bulbs have...
A manufacturer receives an order for fluorescent light bulbs. The order requires that the bulbs have a mean life span of 950 hours. The manufacturer selects a random sample of 25 fluorescent light bulbs and finds that they have a mean life span of 945 hours with a standard deviation of 15 hours. Test to see if the manufacturer is making acceptable light bulbs. Use a 95% confidence level. Assume the data are normally distributed.
A manufacturer claims that the mean lifetime, u, of its light bulbs is 53 months. The...
A manufacturer claims that the mean lifetime, u, of its light bulbs is 53 months. The standard deviation of these lifetimes is 6 months. Ninety bulbs are selected at random, and their mean lifetime is found to be 52 months. Can we conclude, at the 0.05 level of significance, that the mean lifetime of light bulbs made by this manufacturer differs from 53 months? Perform a two-tailed test. Then fill in the table below. Carry your intermediate computations to at...