Question

A dog manufacturer must monitor the grams of fat contained in a food item. When the...

A dog manufacturer must monitor the grams of fat contained in a food item. When the manufacturing process is in control, the grams of fat in the food form a normal population with a mean of 22.1 grams and a standard deviation of 0.7 of a gram. Compute the upper and lower control limits of an x-bar chart for 40 samples of size 8.

Homework Answers

Answer #1

Solution:
Upper and Lower control limits for Xbar chart can be calculated as
Here no. of sample size = 8
LCL = Mean - 3*/sqrt(n)
UCL= Mean +3*/sqrt(n)

Also Mean = 22.1 Grams
Standard deviation = 0.7 Grams
LCL = 22.1 - 3*0.7/sqrt(8) = 22.1 - 0.74 = 21.36
UCL = 22.1 + 3*0.7/sqrt(8) = 22.1 + 0.74 = 22.84
So Upper and Lower control limit of an x bar chart is 22.84 grams and 21.36 grams.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A dog food company packages their food in 40 lbs bags. After taking 9 samples of...
A dog food company packages their food in 40 lbs bags. After taking 9 samples of 6 bags and determining their process to be in control x -bar -bar = 42.5875 and R bar = 1.2937 1) compute the upper control limits / lower control limits for both X and R 2) what is n in this situation 3) calculate the Natural Tolarence Limits
Data were collected from a process in which the factor of interest was whether a finished...
Data were collected from a process in which the factor of interest was whether a finished item contained a particular attribute. The fraction of items that did not contain the attribute was recorded. A total of 20 samples were selected. The common sample size was 150 items. The total number of nonconforming items was 720. Based on these data, compute the upper and lower control limits for the p-chart.
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.42 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.58 1.3 14 95.22 0.6 15 95.04 0.8 16...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.42 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.60 1.3 14 95.22 0.6 15 95.04 0.8 16...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating satisfactorily. In the 25 samples, a total of 185 items were found to be defective. (a) What is an estimate of the proportion defective when the process is in control? (b) What is the standard error of the proportion if samples of size 100 will be used for statistical process control? (Round your answer to four decimal places.) (c) Compute the upper and lower...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.44 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 0.9 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.54 1.3 14 95.22 0.6 15 95.04 0.8 16...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data...
The following are quality control data for a manufacturing process at Kensport Chemical Company. The data show the temperature in degrees centigrade at five points in time during a manufacturing cycle. Sample x R 1 95.72 1.0 2 95.24 0.9 3 95.18 0.7 4 95.46 0.4 5 95.46 0.5 6 95.32 1.1 7 95.40 1.0 8 95.44 0.3 9 95.08 0.2 10 95.50 0.6 11 95.80 0.6 12 95.22 0.2 13 95.60 1.3 14 95.22 0.5 15 95.04 0.8 16...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating...
Twenty-five samples of 100 items each were inspected when a process was considered to be operating satisfactorily. In the 25 samples, a total of 180 items were found to be defective. (a)What is an estimate of the proportion defective when the process is in control? _________________. (b)What is the standard error of the proportion if samples of size 100 will be used for statistical process control? (Round your answer to four decimal places.) ________________. (c)Compute the upper and lower control...
HCH Manufacturing has decided to use a p-Chart with 2-sigma control limits to monitor the proportion...
HCH Manufacturing has decided to use a p-Chart with 2-sigma control limits to monitor the proportion of defective steel bars produced by their production process. The quality control manager randomly samples 250 steel bars at 12 successively selected time periods and counts the number of defective steel bars in the sample. Sample   Defects 1   7 2   10 3   14 4   8 5   9 6   11 7   9 8   9 9   14 10   11 11   7 12   8 Step 1 of...
Temperature is used to measure the output of a production process. When the process is in...
Temperature is used to measure the output of a production process. When the process is in control, the mean of the process is μ = 128.5 and the standard deviation is σ = 0.3. (a) Compute the upper and lower control limits if samples of size 6 are to be used. (Round your answers to two decimal places.) UCL = LCL = Construct the x chart for this process. A graph shows three horizontal lines. The horizontal axis is labeled...