Question

1. Remember that a Poisson Distribution has a density function of f(x) = [e^(−k)k^x]/x! . It...

1. Remember that a Poisson Distribution has a density function of f(x) = [e^(−k)k^x]/x! . It has a mean and variance both equal to k.

(a) Use the method of moments to find an estimator for k.

(b) Use the maximum likelihood method to find an estimator for k.

(c) Show that the estimator you got from the first part is an unbiased estimator for k.

(d) (5 points) Find an expression for the variance of the estimator you have found. (e)

(3 points) If we obtained a random sample from a Poisson distribution of 4, 8, 6, 4, 4, 5, 5, 3, what would you estimate k to be?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Remember a geometric distribution has density f(x) = (1 − p) ^(x−1)p , E(X) =...
1. Remember a geometric distribution has density f(x) = (1 − p) ^(x−1)p , E(X) = 1/p , and V (X) = q/p^2 . (a) Use the method of moments to create a point estimator for p. (b) Use the method of maximum likelihood to create another point estimator for p. (It may or may not be the same). (c) Let a random sample be 5, 2, 6, 5, 4. Use your estimator (either) to create a point estimate for...
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for...
Let {X1, ..., Xn} be i.i.d. from a distribution with pdf f(x; θ) = θ/xθ+1 for θ > 2 and x > 1. (a) (10 points) Calculate EX1 and V ar(X1). (b) (5 points) Find the method of moments estimator of θ. (c) (5 points) If we denote the method of moments estimator as ˆθ1. What does √ n( ˆθ1 − θ) converge in distribution to? (d) (5 points) Is the method of moment estimator efficient? Verify your answer.
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x)...
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x) = theta(1-x)^(theta-1), where 0<x<1, where theta is a positive unknown parameter a) Find the method of moments estimator of theta b) Find the maximum likelihood estimator of theta c) Show that the log likelihood function is maximized at theta(hat)
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
Problem 1. The Cauchy distribution with scale 1 has following density function f(x) = 1 /...
Problem 1. The Cauchy distribution with scale 1 has following density function f(x) = 1 / π [1 + (x − η)^2 ] , −∞ < x < ∞. Here η is the location and rate parameter. The goal is to find the maximum likelihood estimator of η. (a) Find the log-likelihood function of f(x) l(η; x1, x2, ..., xn) = log L(η; x1, x2, ..., xn) = (b) Find the first derivative of the log-likelihood function l'(η; x1, x2,...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with...
Let Y1, Y2, . . ., Yn be a random sample from a Laplace distribution with density function f(y|θ) = (1/2θ)e-|y|/θ for -∞ < y < ∞ where θ > 0. The first two moments of the distribution are E(Y) = 0 and E(Y2) = 2θ2. a) Find the likelihood function of the sample. b) What is a sufficient statistic for θ? c) Find the maximum likelihood estimator of θ. d) Find the maximum likelihood estimator of the standard deviation...
5. Let Y1, Y2, ...Yn (independent and identically distributed. ∼ f(y; α) = 1/6 α8y3 ·...
5. Let Y1, Y2, ...Yn (independent and identically distributed. ∼ f(y; α) = 1/6 α8y3 · e^(−α2y3 ), 0 ≤ y < ∞, 0 < α < ∞. (a) (8 points) Find an expression for the Method of Moments estimator of α, ˜α. Show all work. (b) (8 points) Find an expression for the Maximum Likelihood estimator for α, ˆα. Show all work.
1. Let X1, . . . , Xn be i.i.d. continuous RVs with density pθ(x) =...
1. Let X1, . . . , Xn be i.i.d. continuous RVs with density pθ(x) = e−(x−θ), x ≥ θ for some unknown θ > 0. Be sure to notice that x ≥ θ. (This is an example of a shifted Exponential distribution.) (a) Set up the integral you would solve for find the population mean (in terms of θ); be sure to specify d[blank]. (You should set up the integral by hand, but you can use software to evaluate...
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, ....
Consider Poisson distribution f(x|θ) = (e^−θ) [(θ^x) / (x!)] for x = 0, 1, 2, . . . Let the prior distribution for θ be f(θ) = e^−θ for θ > 0. (a) Show that the posterior distribution is a Gamma distribution. With what parameters? (b) Find the Bayes’ estimator for θ.
Consider the random variable X with density given by f(x) = θ 2xe−θx x > 0,...
Consider the random variable X with density given by f(x) = θ 2xe−θx x > 0, θ > 0 a) Derive the expression for E(X). b) Find the method of moment estimator for θ. c) Find the maximum likelihood estimator for θ based on a random sample of size n. Does this estimator differ from that found in part (b)? d) Estimate θ based on the following data: 0.1, 0.3, 0.5, 0.2, 0.3, 0.4, 0.4, 0.3, 0.3, 0.3
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT