Question

Let X1, … , Xn. be a random sample from gamma (2, theta), where theta is...

Let X1, … , Xn. be a random sample from gamma (2, theta), where theta is unknown.

Construct a 100(1 - a)% confidence interval for theta. As a pivot r.v. consider

2 (n∑i=1) (Xi / theta)     

NOTE: gamma (2, theta) = gamma (a, b), where a = 2 and b = theta.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with...
Let X1, X2, . . . Xn be iid random variables from a gamma distribution with unknown α and unknown β. Find the method of moments estimators for α and β
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x)...
Let X1, X2,..., Xn be a random sample from a population with probability density function f(x) = theta(1-x)^(theta-1), where 0<x<1, where theta is a positive unknown parameter a) Find the method of moments estimator of theta b) Find the maximum likelihood estimator of theta c) Show that the log likelihood function is maximized at theta(hat)
Let X1, X2 be a sample of size 2 from the Gamma (Alpha=2, Lamba = 1/theta)...
Let X1, X2 be a sample of size 2 from the Gamma (Alpha=2, Lamba = 1/theta) distribution X1 = Gamma = x/(theta^2) e^(-x/theta) Derive the joint pdf of Y1=X1 and Y2 = X1+X2 Derive the conditional pdf of Y1 given Y2=y2. Can you name that conditional distribution? It might not have name
Let X1, . . . , Xn be iid from a Poisson distribution with unknown λ....
Let X1, . . . , Xn be iid from a Poisson distribution with unknown λ. Following the Bayesian paradigm, suppose we assume the prior distribution for λ is Gamma(α, β). (a) Find the posterior distribution of λ. (b) Is Gamma a conjugate prior? Explain. (c) Use software or tables to provide a 95% credible interval for λ using the 2.5th percentile and 97.5th percentile in the case where xi = 13 and n=10, assuming α = 1 andβ =...
Let X1, ... , Xn be a sample of iid Gamma(?, 1) random variables with ?...
Let X1, ... , Xn be a sample of iid Gamma(?, 1) random variables with ? ∈ (0, ∞). a) Determine the likelihood function L(?). b) Use the Fisher–Neyman factorization theorem to determine a sufficient statistic S for ?.
Let X1,…, Xn be a sample of iid Gamma(?, ?) random variables with ? known and...
Let X1,…, Xn be a sample of iid Gamma(?, ?) random variables with ? known and Θ=(0, ∞). Determine a) the MLE ? of ?. b) E(? ̂). c) Var(? ̂). e) whether or not ? is a UMVUE of ?.
Let X1, X2, · · · , Xn be a random sample from an exponential distribution...
Let X1, X2, · · · , Xn be a random sample from an exponential distribution f(x) = (1/θ)e^(−x/θ) for x ≥ 0. Show that likelihood ratio test of H0 : θ = θ0 against H1 : θ ≠ θ0 is based on the statistic n∑i=1 Xi.
Let X1, . . . , Xn be a random sample from a Poisson distribution. (a)...
Let X1, . . . , Xn be a random sample from a Poisson distribution. (a) Prove that Pn i=1 Xi is a sufficient statistic for λ. (b) The MLE for λ in a Poisson distribution is X. Use this fact and the result of part (a) to argue that the MLE is also a sufficient statistic for λ.
Let X1, X2, . . . , Xn be a random sample from a population following...
Let X1, X2, . . . , Xn be a random sample from a population following a uniform(0,2θ) (a) Show that if n is large, the distribution of Z =( X − θ) / ( θ/√ 3n) is approximately N(0, 1). (b) We can estimate θ by X(sample mean) and define W = (X − θ ) / (X/√ 3n) which is also approximately N(0, 1) for large n. Derive a (1 − α)100% confidence interval for θ based on...
Let X1,...,Xn be a random sample from a normal distribution where the variance is known and...
Let X1,...,Xn be a random sample from a normal distribution where the variance is known and the mean is unknown.   Find the minimum variance unbiased estimator of the mean. Justify all your steps.