Question

Let X be exponentially distributed with paramter 2, and let Y be exponentially distributed with parameter...

Let X be exponentially distributed with paramter 2, and let Y be exponentially distributed with parameter 4. Suppose X and Y are independent.
(a) Let Z = Y/X. Determine the cdf and pdf of Z. (b) Define two random variables V and W by V = X + Y, W = X −Y Determine the joint pdf of V and W, and sketch the region in the vw-plane on which the joint pdf is nonzero

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X +...
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X + Y and V = Y . (a) Find the joint PDF of U and V (b) Find the marginal PDF of U.
2.33 X and Y are independent zero mean Gaussian random variables with variances sigma^2 x, and...
2.33 X and Y are independent zero mean Gaussian random variables with variances sigma^2 x, and sigma^2 y. Let Z = 1/2(X + Y) and W =1/2 (X - Y) a. Find the joint pdf fz, w(z, w). b. Find the marginal pdf f(z). c. Are Z and W independent?
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a)....
Let X and Y be independent exponential random variables with respective parameters 2 and 3. a). Find the cdf and density of Z = X/Y . b). Compute P(X < Y ). c). Find the cdf and density of W = min{X,Y }.
Suppose that X ∼ Unif[0, 3] and Y is independent of X and exponentially distributed with...
Suppose that X ∼ Unif[0, 3] and Y is independent of X and exponentially distributed with rate 2. Find the pdf of (a) max{X,Y}. (b) min{X,Y}.
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y...
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y for 0 ≤ y ≤ 1 and 1 ≤ x ≤ 2. If U = XY and V = X/Y , calculate the joint pdf of U and V , fUV (u, v).
Let X and Y independent random variables with U distribution (−1,1). Using the Jacobian method, determine...
Let X and Y independent random variables with U distribution (−1,1). Using the Jacobian method, determine the joint distribution of Z=X-Y and W= X+Y.
Let U1 and U2 be independent Uniform(0, 1) random variables and let Y = U1U2. (a)...
Let U1 and U2 be independent Uniform(0, 1) random variables and let Y = U1U2. (a) Write down the joint pdf of U1 and U2. (b) Find the cdf of Y by obtaining an expression for FY (y) = P(Y ≤ y) = P(U1U2 ≤ y) for all y. (c) Find the pdf of Y by taking the derivative of FY (y) with respect to y (d) Let X = U2 and find the joint pdf of the rv pair...
Let X and Y be independent and identically distributed with an exponential distribution with parameter 1,...
Let X and Y be independent and identically distributed with an exponential distribution with parameter 1, Exp(1). (a) Find the p.d.f. of Z = Y/X. (b) Find the p.d.f. of Z = X − Y .
Suppose X and Y are continuous random variables with joint pdf f(x,y) = x + y,...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = x + y, 0 < x< 1, 0 < y< 1. Let W = max(X,Y). Find EW.
Let X and Y be independent exponentially distributed stochastic variables with parameters α and β. Find...
Let X and Y be independent exponentially distributed stochastic variables with parameters α and β. Find the distribution function (c.d.f.) of X / Y. Please show work involved and general equations used. As much supplementary text as possible will be greatly appreciated