Question

Descriptive analysis revealed that the mean Test 3 score of all 63 students in Dr. Bill’s...

Descriptive analysis revealed that the mean Test 3 score of all 63 students in Dr. Bill’s statistics courses was an 80. Similarly, the standard deviation for all students’ Test 3 scores was found to be 16. Assume the Test 3 scores are approximately normally distributed.

1. Find the z-score that corresponds to a Test 3 score of 34. Round your solution to two decimal places.

2. What is the probability that a randomly selected student scored a 75 or above on the test? That is, calculate . Round your solution to four decimal places.

Homework Answers

Answer #1

(1)

= 80

= 16

X = 34

Z = (34 - 80)/16

= - 2.88

So,

Answer is:

- 2.88

(2)

= 80

= 16

To find P(X 75):

Z = (75 - 80)/16

= - 0.3125

By Technology, Cumulative Area Under Standard Normal Curve = 0.3773

So,

P(X 75): = 1 - 0.3773 = 0.6227

So,

Answer is:

0.6227

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Descriptive analysis revealed that the mean Test 3 score of all 63 students in Dr. Kilman’s...
Descriptive analysis revealed that the mean Test 3 score of all 63 students in Dr. Kilman’s statistics courses was an 80. Similarly, the standard deviation for all students’ Test 3 scores was found to be 16. Assume the Test 3 scores are approximately normally distributed. Next, suppose a random sample of 36 students is drawn. Let  be the mean Test 3 score of such a sample. 12. Since the standard deviation of the sampling distribution () is ______ than the population...
Descriptive analysis revealed that the mean Test 1 score of all statistics students was 71.23, with...
Descriptive analysis revealed that the mean Test 1 score of all statistics students was 71.23, with a standard deviation of 19.04. Furthermore, assume that the distribution of all students' Test 3 scores is normally distributed. Determine the z-score that corresponds to Test 3 score of 83. Round the solution to two decimal places. z= Determine the following probabilities. Round all probability solutions to four decimal places. Determine the probability that a randomly selected student scored exactly a 59 on Test...
Statistics students believe that the mean score on a first statistics test is 65. The instructor...
Statistics students believe that the mean score on a first statistics test is 65. The instructor thinks that the mean score is higher. She samples 10 statistics students and obtains the scores: Grades 85.5 73.5 62.7 74.4 73.5 96 74.4 68.4 68.4 88 Test grades are believed to be normally distributed. Use a significance level of 5%. State the alternative hypothesis: HA: μ>65 State the mean of the sample: 76.48 (Round to two decimal places.) State the standard error of...
Statistics students believe that the mean score on the first statistics test is 85. A statistics...
Statistics students believe that the mean score on the first statistics test is 85. A statistics instructor thinks the mean score is higher than 85. He samples ten statistics students and obtains the scores 78 84 90 83 84 83 83 84 81 88 This from the example Ch9 pg 519 use tTest Enter the p-value (round to 4 decimal places) Wk7Hw_1smplt5
forty students took a test on which the mean score was an 82 and standard deviation...
forty students took a test on which the mean score was an 82 and standard deviation was 7.8. the distribution of the scores followed a normal model and a grade of B or better was assigned to all students who scored 85 or higher. approximately how many grades of B or better were given? (choose closest answer) (a) 8, (b) 10, (c) 14, (d) 28, (e) 35
An SAT prep course claims to improve the test score of students. The table below shows...
An SAT prep course claims to improve the test score of students. The table below shows the scores for seven students the first two times they took the verbal SAT. Before taking the SAT for the second time, each student took a course to try to improve his or her verbal SAT scores. Do these results support the claim that the SAT prep course improves the students' verbal SAT scores? Let d=(verbal SAT scores prior to taking the prep course)−(verbal...
An SAT prep course claims to improve the test score of students. The table below shows...
An SAT prep course claims to improve the test score of students. The table below shows the scores for seven students the first two times they took the verbal SAT. Before taking the SAT for the second time, each student took a course to try to improve his or her verbal SAT scores. Do these results support the claim that the SAT prep course improves the students' verbal SAT scores? Let d=(verbal SAT scores prior to taking the prep course)−(verbal...
An SAT prep course claims to improve the test score of students. The table below shows...
An SAT prep course claims to improve the test score of students. The table below shows the scores for seven students the first two times they took the verbal SAT. Before taking the SAT for the second time, each student took a course to try to improve his or her verbal SAT scores. Do these results support the claim that the SAT prep course improves the students' verbal SAT scores? Let d=(verbal SAT scores prior to taking the prep course)−(verbal...
9. An SAT prep course claims to improve the test score of students. The table below...
9. An SAT prep course claims to improve the test score of students. The table below shows the scores for seven students the first two times they took the verbal SAT. Before taking the SAT for the second time, each student took a course to try to improve his or her verbal SAT scores. Do these results support the claim that the SAT prep course improves the students' verbal SAT scores? Let d=(verbal SAT scores prior to taking the prep...
(3 pts) For students in a certain region, scores of students on a standardized test approximately...
(3 pts) For students in a certain region, scores of students on a standardized test approximately follow a normal distribution with mean μ=543.4 and standard deviation σ=30. In completing the parts below, you should use the normal curve area table that is included in your formula packet. (a) What is the probability that a single randomly selected student from among all those in region who took the exam will have a score of 548 or higher? ANSWER:   For parts (b)...