Question

let X be a random variable that denotes the life (or time to failure) in hours...

let X be a random variable that denotes the life (or time to failure) in hours of a certain electronic device. Its probability density function is given by

f(x){ 0.1 e−0.1x, x > 0 , 0 , elsewhere

(a) What is the mean lifetime of this type of device?

(b) Find the variance of the lifetime of this device.

(c) Find the expected value of X2 − 20X + 100.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question7: The lifetime (hours) of an electronic device is a random variable with the exponential probability...
Question7: The lifetime (hours) of an electronic device is a random variable with the exponential probability density function: f (x) = 1/50 e^(-x/50) for x≥ 0 what is the mean lifetime of the device? what is the probability that the device fails in the first 25 hours of operation? what is the probability that the device operates 100 or more hours before failure?
Question7: The lifetime (hours) of an electronic device is a random variable with the exponential probability...
Question7: The lifetime (hours) of an electronic device is a random variable with the exponential probability density function: f (x) = 1/50 e^(-x/50) for x≥ 0 a) what is the mean lifetime of the device? b) what is the probability that the device fails in the first 25 hours of operation? c) what is the probability that the device operates 100 or more hours before failure?
Let X be a random variable with probability density function given by f(x) = 2(1 −...
Let X be a random variable with probability density function given by f(x) = 2(1 − x), 0 ≤ x ≤ 1,   0, elsewhere. (a) Find the density function of Y = 1 − 2X, and find E[Y ] and Var[Y ] by using the derived density function. (b) Find E[Y ] and Var[Y ] by the properties of the expectation and the varianc
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1)...
Let X be a continuous random variable with the following probability density function: f(x) = e^−(x−1) for x ≥ 1; 0 elsewhere (i) Find P(0.5 < X < 2). (ii) Find the value such that random variable X exceeds it 50% of the time. This value is called the median of the random variable X.
Let X be a random variable with probability density function f(x) = {3/10x(3-x) if 0<=x<=2 .........{0...
Let X be a random variable with probability density function f(x) = {3/10x(3-x) if 0<=x<=2 .........{0 otherwise a) Find the standard deviation of X to four decimal places. b) Find the mean of X to four decimal places. c) Let y=x2 find the probability density function fy of Y.
Part A The variable X(random variable) has a density function of the following f(x) = {5e-5x...
Part A The variable X(random variable) has a density function of the following f(x) = {5e-5x if 0<= x < infinity and 0 otherwise} Calculate E(ex) Part B Let X be a continuous random variable with probability density function f (x) = {6/x2 if 2<x<3 and 0 otherwise } Find E (ln (X)). .
1. Let the random variable X denote the time (in hours) required to upgrade a computer...
1. Let the random variable X denote the time (in hours) required to upgrade a computer system. Assume that the probability density function for X is given by: p(x) = Ce^-2x for 0 < x < infinity (and p(x) = 0 otherwise). a) Find the numerical value of C that makes this a valid probability density function. b) Find the probability that it will take at most 45 minutes to upgrade a given system. c) Use the definition of the...
2. Let the probability density function (pdf) of random variable X be given by:                           ...
2. Let the probability density function (pdf) of random variable X be given by:                            f(x) = C (2x - x²),                         for 0< x < 2,                         f(x) = 0,                                       otherwise      Find the value of C.                                                                           (5points) Find cumulative probability function F(x)                                       (5points) Find P (0 < X < 1), P (1< X < 2), P (2 < X <3)                                (3points) Find the mean, : , and variance, F².                                                   (6points)
Find the item that matches the description below. The random variable X denotes a normally distributed...
Find the item that matches the description below. The random variable X denotes a normally distributed random​ variable, X~N(μ, σ2). The random variable Z denotes a standard normal random​ variable, Z~N(0, 1). Variance of X
Let random variable x be a continous random variable and it’s probabilty density function is given...
Let random variable x be a continous random variable and it’s probabilty density function is given as; f(x) = 3x^2 , 0 < x < 1 So find the probabilty that the random variable x exceeds the value of 1/2 (single random variable question)