In a rural area of South Carolina, 49 percent of adults are in favor of passing law XYZ. If 27 adults are randomly selected, what is the probability of exactly 19 being in favor of XYZ?
a. 0.013 b. 0.023 c. 0.033 d. 0.043
What is the probability of at least 17 being in favor of law XYZ (see question 8 above)?
a. 0.204 b. 0.304 c. 0.404 d. 0.104
9. What is the probability of at least 17 being in favor of law XYZ (see question 8 above)?
a. 0.204 b. 0.304 c. 0.404 d. 0.104
8.
By using binomial distribution
P ( X )
= ( n c x ) p x q n - x
= ( 27 C 19 ) ( 0.49 ) 19 ( 0.51 ) 27 - 19
= 0.013
So the option is ( a )
9.
P ( X )
= ( n c x ) p x q n - x
= ( 27 C 17 ) ( 0.49 ) 17 ( 0.51 ) 27 - 17 + ( 27 C 18 ) ( 0.49 ) 18 ( 0.51 ) 27 - 18 + ( 27 C 18 ) ( 0.49 ) 18 ( 0.51 ) 27 - 18 + ( 27 C 19 ) ( 0.49 ) 19 ( 0.51 ) 27 - 19 + ( 27 C 20 ) ( 0.49 )20 ( 0.51 ) 27 - 20 + ( 27 C 21 ) ( 0.49 ) 21 ( 0.51 ) 27 - 21 + ( 27 C 22) ( 0.49 ) 22( 0.51 ) 27 - 22 + ( 27 C 23 ) ( 0.49 ) 23 ( 0.51 ) 27 - 23 + ( 27 C 24) ( 0.49 ) 24 ( 0.51 ) 27 - 24 + ( 27 C 25 ) ( 0.49 ) 25( 0.51 ) 27 - 25 + ( 27 C 26 ) ( 0.49 ) 26 ( 0.51 ) 27 - 26 + ( 27 C 27 ) ( 0.49 ) 27 ( 0.51 ) 27 - 27
= 0.204
So the option is ( a )
Get Answers For Free
Most questions answered within 1 hours.