Question

Let X ~ N (1, 2^2) and Y ~ N (2, 2^2). Suppose that X and...

Let X ~ N (1, 2^2) and Y ~ N (2, 2^2). Suppose that X and Y are independent. Let U = X + Y and V = X ̶Y. Show that U and V are independent normal random variables. Find the distribution of each of them.

Homework Answers

Answer #1

Here we use additive property of normal distribution.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2)....
Let X and Y be independent N(0,1) RVs. Suppose U = (X+Y)/squareroot(2) and V = (X-Y)/squareroot(2). Please derive the joint distribution of (U, V ) by using the Jacobian matrix method.
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X +...
Suppose that X and Y are independent Uniform(0,1) random variables. And let U = X + Y and V = Y . (a) Find the joint PDF of U and V (b) Find the marginal PDF of U.
(9) Let X and Y be iid Exp(1) RV’s. Define U = X / (X+Y) and...
(9) Let X and Y be iid Exp(1) RV’s. Define U = X / (X+Y) and V = X + Y . Show your Work. (a) Derive the joint density for (U, V ). (b) What is the marginal distribution for U? (c) Find the conditional mean E(X | V = 2). (d) Are U and V independent? Explain why
Let random variables X and Y follow a bivariate Gaussian distribution, where X and Y are...
Let random variables X and Y follow a bivariate Gaussian distribution, where X and Y are independent and Cov(X,Y) = 0. Show that Y|X ~ Normal(E[Y|X], V[Y|X]). What are E[Y|X] and V[Y|X]?
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~...
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~ gamma(a,b) is the prior distribution for Y. a and b are also known. 1. Find the posterior distribution of Y|X=x where X=(X1, X2, ... , Xn) and x is an observed sample of size n from the distribution of X. 2. Suppose the number of people who visit a nursing home on a day is Poisson random variable and the parameter of the Poisson...
Let U and V be two independent standard normal random variables, and let X = |U|...
Let U and V be two independent standard normal random variables, and let X = |U| and Y = |V|. Let R = Y/X and D = Y-X. (1) Find the joint density of (X,R) and that of (X,D). (2) Find the conditional density of X given R and of X given D. (3) Find the expectation of X given R and of X given D. (4) Find, in particular, the expectation of X given R = 1 and of...
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y...
19. Let X and Y be continuous random variables with joint pdf: f(x, y) = x−y for 0 ≤ y ≤ 1 and 1 ≤ x ≤ 2. If U = XY and V = X/Y , calculate the joint pdf of U and V , fUV (u, v).
Let y ∼ MV N(µ, V ) be a n × 1 random vector and suppose...
Let y ∼ MV N(µ, V ) be a n × 1 random vector and suppose V is nonsingular. Find A and b such that Ay + b is an n-length vector of independent standard normals. Please use Linear Algebra method
Let X and Y be independent random variables each having the uniform distribution on [0, 1]....
Let X and Y be independent random variables each having the uniform distribution on [0, 1]. (1)Find the conditional densities of X and Y given that X > Y . (2)Find E(X|X>Y) and E(Y|X>Y) .
Let X ~ N(1,3) and Y~ N(5,7) be two independent random variables. Find... Var(X + Y...
Let X ~ N(1,3) and Y~ N(5,7) be two independent random variables. Find... Var(X + Y + 32) Var(X -Y) Var(2X - 4Y)