Question

Researchers have claimed that the average number of headaches during a semester of Statistics is 14....

Researchers have claimed that the average number of headaches during a semester of Statistics is 14. Statistics professors dispute this claim vehemently. Statistic professors believe the average is much more than this. They sample n = 13 students and find the sample mean is 16 and the sample standard deviation is 2.0. Suppose they actually test H0: mu = 14 vs. Ha: mu not= 14. The correct conclusion at alpha = 0.001 is:

a. p-value = 0.0011.

b. Accept H0 in favor of Ha.

c. Reject H0 in favor of Ha.

d. Fail to reject H0 in favor of Ha.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that the average trip time from Oak Park to UIC on the Blue line is...
Suppose that the average trip time from Oak Park to UIC on the Blue line is 22 minutes and that the standard deviation of the population is 16 minutes (sigma=16). We are interested to know whether the average trip time on Thursdays is longer. We study a sample of 49 trips on Thursdays and the average is 23.75 minutes. Execute a hypothesis test at alpha=5% that the average trip time on Thursdays is longer (that is, that it requires a...
1. According to a recent report, 38% of adults wait until they are 30 years of...
1. According to a recent report, 38% of adults wait until they are 30 years of age or older to get married for the first time. A researcher believes this claimed value is too low. He gathers data in order to test the hypotheses Ho: p = 0.38 vs. Ha: p > 0.38. In these hypotheses, what does p represent? A. The sample proportion B. The population proportion C. The p-value D. The sample mean E. The population mean 2....
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.01 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.01 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.05 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.01 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) 1 274...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.05 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) 1 268...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a...
Foot-Length (Raw Data, Software Required): It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.01 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) 1 270...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.05 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is...
Foot-Length: It has been claimed that, on average, right-handed people have a left foot that is larger than the right foot. Here we test this claim on a sample of 10 right-handed adults. The table below gives the left and right foot measurements in millimeters (mm). Test the claim at the 0.05 significance level. You may assume the sample of differences comes from a normally distributed population. Person Left Foot (x) Right Foot (y) difference (d = x − y)...