Question

A continuous r.v. X follows the pdf: ?(?) = 2? 3 when 1 ≤ ? ≤...

A continuous r.v. X follows the pdf: ?(?) = 2? 3 when 1 ≤ ? ≤ 2.

(a) Find the cdf of X for 1 ≤ ? ≤ 2.

(b) Find the mean and variance of X.

(c) Find P(X = 1.22)

Homework Answers

Answer #1

The pdf of the random variable X is

a) By definition,

The cdf of X is given by

b) The mean of random variable X is

Moreover,

Hence,

The variance of X =

c) since X is a continuous variable.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0...
3. Let X be a continuous random variable with PDF fX(x) = c / x^1/2, 0 < x < 1. (a) Find the value of c such that fX(x) is indeed a PDF. Is this PDF bounded? (b) Determine and sketch the graph of the CDF of X. (c) Compute each of the following: (i) P(X > 0.5). (ii) P(X = 0). (ii) The median of X. (ii) The mean of X.
A continuous random variable X has pdf ?x(?) = (? + 1) ?^2, 0 ≤ ?...
A continuous random variable X has pdf ?x(?) = (? + 1) ?^2, 0 ≤ ? ≤ ? + 1, Where B is the last digit of your registration number (e.g. for FA18-BEE-123, B=3). a) Find the value of a b) Find cumulative distribution function (CDF) of X i.e. ?? (?). c) Find the mean of X d) Find variance of X.
Let X be a discrete r.v. and Y be a continuous r.v. such that the conditional...
Let X be a discrete r.v. and Y be a continuous r.v. such that the conditional distribution of X given Y = y is a (discrete) geometric distribution with probability for success p, and such that Y has pdf f_Y(y) = 3y for 0 < y < 1 (and zero otherwise). a) Compute the pmf of X. b) Compute E[X]. c) Does the r.v. Var(X | Y) have a finite expectation?
5. Let X be a continuous random variable with PDF fX(x)= c(2+x), −2 < x <...
5. Let X be a continuous random variable with PDF fX(x)= c(2+x), −2 < x < −1, c(2−x), 1<x<2, 0, elsewhere (a) Find the value of c such that fX(x) is indeed a PDF. (b) Determine the CDF of X and sketch its graph. (c) Find P(X < 1.5). (d) Find m = π0.5 of X. Is it unique?
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0...
Let X be a continuous random variable with probability density function (pdf) ?(?) = ??^3, 0 < ? < 2. (a) Find the constant c. (b) Find the cumulative distribution function (CDF) of X. (c) Find P(X < 0.5), and P(X > 1.0). (d) Find E(X), Var(X) and E(X5 ).
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b)...
Let X be a random variable with pdf f(x)=12, 0<x<2. a) Find the cdf F(x). b) Find the mean of X. c) Find the variance of X. d) Find F (1.4). e) Find P(12<X<1). f) Find PX>3.
Let X be a r.v with pmf p(x) = c( 2 /3 )^ x , x...
Let X be a r.v with pmf p(x) = c( 2 /3 )^ x , x = 0, 1, 2, 3, ... (infinitely many values of x) (a) Find the constant c. (b) With the constant you find in (a), find the mean E(X)
Let the random variable X have pdf f(x) = x^2/18; -3 < x < 3 and...
Let the random variable X have pdf f(x) = x^2/18; -3 < x < 3 and zero otherwise. a) Find the pdf of Y= X^2 b) Find the CDF of Y= X^2 c) Find P(Y<1.9)
A random variable X has the following pdf f(x)=2x^-3, if x ≥1 0, Otherwise (a) Find...
A random variable X has the following pdf f(x)=2x^-3, if x ≥1 0, Otherwise (a) Find the cdf of X (b) Give a formula for the pth quantile of X and use it to find the median of X. (c) Find the mean and variance of X
Suppose a r.v. X has pdf fX (x), cdf FX (x), and mgf MX (t). Which...
Suppose a r.v. X has pdf fX (x), cdf FX (x), and mgf MX (t). Which of these three functions would you use to compute the median value of this distribution? Explain why, and write one equation that you could use/solve to find the median.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT