Question

2. The joint probability density function of X and Y is given by                               &nbsp

2.

The joint probability density function of X and Y is given by                                          

       f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise

a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1}

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. 2. The joint probability density function of X and Y is given by                               &n
2. 2. The joint probability density function of X and Y is given by                                                  f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1} [5+5+5+5 = 20]
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = 6x 0<y<1, 0<x<y, 0 otherwise. a) Find the marginal density of Y . b) Are X and Y independent? c) Find the conditional density of X given Y = 1 /2
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when...
For continuous random variables X and Y with joint probability density function. f(x,y) = xe−(x+y) when x > 0 and y > 0 f(x,y) = 0 otherwise a. Find the conditional density F xly (xly) b. Find the marginal probability density function fX (x) c. Find the marginal probability density function fY (y). d. Explain if X and Y are independent
Let X and Y be two continuous random variables with joint probability density function f(x,y) =...
Let X and Y be two continuous random variables with joint probability density function f(x,y) = xe^−x(y+1), 0 , 0< x < ∞,0 < y < ∞ otherwise (a) Are X and Y independent or not? Why? (b) Find the conditional density function of Y given X = 1.(
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y)...
4. Let X and Y be random variables having joint probability density function (pdf) f(x, y) = 4/7 (xy − y), 4 < x < 5 and 0 < y < 1 (a) Find the marginal density fY (y). (b) Show that the marginal density, fY (y), integrates to 1 (i.e., it is a density.) (c) Find fX|Y (x|y), the conditional density of X given Y = y. (d) Show that fX|Y (x|y) is actually a pdf (i.e., it integrates...
The joint probability density function of two random variables (X and Y) is given by fX,Y...
The joint probability density function of two random variables (X and Y) is given by fX,Y (x, y) = ( C √y (y ^(α+1)) exp {( − y(2β+x ^2 ) )/2 } , x ∈ (−∞,∞), y ∈ [0,∞), 0 otherwise. (a) Find C. (b) Find the marginal density of Y . What type of distribution does Y follow? (c) Find the conditional density of X | Y . What type of distribution is this?
The joint probability distribution of two random variables X and Y is given in the following...
The joint probability distribution of two random variables X and Y is given in the following table X Y → ↓ 0 1 2 3 f(x) 2 1/12 1/12 1/12 1/12 3 1/12 1/6 1/12 0 4 1/12 1/12 0 1/6 f(y) a) Find the marginal density of X and the marginal density of Y. (add them to the above table) b) Are X and Y independent? c) Compute the P{Y>1| X>2} d) Compute the expected value of X. e)...
Let X and Y be a random variables with the joint probability density function fX,Y (x,...
Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { cx2y, 0 < x2 < y < x for x > 0 0, otherwise }. compute the marginal probability density functions fX(x) and fY (y). Are the random variables X and Y independent?.
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩...
Let X and Y have the joint probability density function f(x, y) = ⎧⎪⎪ ⎨ ⎪⎪⎩ ke−y , if 0 ≤ x ≤ y < ∞, 0, otherwise. (a) (6pts) Find k so that f(x, y) is a valid joint p.d.f. (b) (6pts) Find the marginal p.d.f. fX(x) and fY (y). Are X and Y independent?