Question

you are thinking of playing a game with a pair of dice. you will win if...

you are thinking of playing a game with a pair of dice. you will win if the sum of the top faces is either 7 or 8. the loser pays the winner $1 each game. should you play? set up a probability distribution table and use it to find your expected earnings. Then make your decisions.

Homework Answers

Answer #1

Total number of cases possible = 6x6 = 36

Sum is 7 in the following cases: (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)

P(sum is 7) = 6/36 = 1/6

Sum is 8 in the following cases: (2,6), (3,5), (4,4), (5,3), (6,2)

P(sum is 8) = 5/36

P(Sum is 7 or 8 when rolling a dies) = P(sum is 7) + P(sum is 8)

= 6/36 + 5/36

= 11/36

P(losing the game) = 1 - 11/36 = 25/36

Winning($) 1 -1
P(winning) 11/36 25/36

Expected value of the game = 1x11/36 + -1x25/36

= $ -14/36

The expected value is negative. So, you should not play this game.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Your friend wants to play a game with a pair of dice. You win if the...
Your friend wants to play a game with a pair of dice. You win if the sum of the top faces is 5, 6, 7, or 8. The winner pays the loser $1 each game. Should you play?
Suppose you’re playing a dice game in which two 6-sided dice are thrown, and players win...
Suppose you’re playing a dice game in which two 6-sided dice are thrown, and players win when the sum of the values appearing on the dice is at least 7. In the last 100 games, you’ve noticed that players have won 95 times. Do you have any reason to believe that the dice are unfairly weighted using the central limit theorem? I have understood up to getting z=7.434. But how do you know to find P(z>7.434) and not use P(x<7.434)....
You pay $1 to play a game. The game consists of rolling a pair of dice....
You pay $1 to play a game. The game consists of rolling a pair of dice. If you observe a sum of 7 or 11 you receive $4. If not, you receive nothing. Compute the expected value and standard deviation for this game?
You pay $1 to play a game. The game consists of rolling a pair of dice....
You pay $1 to play a game. The game consists of rolling a pair of dice. If you observe a sum of 7 or 11 you receive $4. If not, you receive nothing. Compute the expected value and standard deviation for this game?
A pair of fair dice is rolled once. Suppose that you lose ​$11 if the dice...
A pair of fair dice is rolled once. Suppose that you lose ​$11 if the dice sum to 4 and win ​$14 if the dice sum to 3 or 2 How much should you win or lose if any other number turns up in order for the game to be​ fair?
A pair of fair dice is rolled once. Suppose that you lose $9 if the dice...
A pair of fair dice is rolled once. Suppose that you lose $9 if the dice sum to 3 and win $11 if the dice sum to 4 or 8. How mych should you win or lose if any other number turns up in order for the game to be fair?
1. Answer the following questions on probability distributions: a) A game is played by rolling two...
1. Answer the following questions on probability distributions: a) A game is played by rolling two dice. If the sum of the dice is either 2 or 11 then you win $2. If the sum is a 5, then you win $1. All other sums you win zero. If the cost of the game is 75 cents, is the game fair? b)A game consists of rolling a pair of dice 10 times. For each sum that equals either three, four,...
A pair of fair dice is rolled once. Suppose that you lose ​$ 9 9 if...
A pair of fair dice is rolled once. Suppose that you lose ​$ 9 9 if the dice sum to 10 10 and win ​$ 13 13 if the dice sum to 4 4 or 12 12. How much should you win or lose if any other number turns up in order for the game to be​ fair?
. A dice game is played as follows: you pay one dollar to play, then you...
. A dice game is played as follows: you pay one dollar to play, then you roll a fair six-sided die. If you roll a six, you win three dollars. Someone claims to have won a thousand dollars playing this game nine thousand times. How unlikely is this? Find an upper bound for the probability that a person playing this game will win at least a thousand dollars.
A gambler plays a dice game where a pair of fair dice are rolled one time...
A gambler plays a dice game where a pair of fair dice are rolled one time and the sum is recorded. The gambler will continue to place $2 bets that the sum is 6, 7, 8, or 9 until she has won 7 of these bets. That is, each time the dice are rolled, she wins $2 if the sum is 6, 7, 8, or 9 and she loses $2 each time the sum is not 6, 7, 8, or...