Question

Consider two random variables, X and Y, with joint PDF fxy(x,y)=e-2|y-x^2|-x    x>=0 , y can...

Consider two random variables, X and Y, with joint PDF

fxy(x,y)=e-2|y-x^2|-x    x>=0 , y can be any value

fxy(x,y)=0 otherwise

(1) Determine fY|X(y|x)

(2)Determine E[Y|X=x]

Homework Answers

Answer #1

Use definitions of conditional pdf and marginal pdf to compute the required conditional pdf. To remove the modulus in the pdf, split into

Conditional pdf

Marginal pdf from Joint pdf

Conditional Expectation

In the second part, use definition of conditional expectation.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X & Y be two continuous random variables with joint pdf: fXY(X,Y) = { 2...
Let X & Y be two continuous random variables with joint pdf: fXY(X,Y) = { 2 x+y =< 1, x >0, y>0 { 0 otherwise find Cov(X,Y) and ρX,Y
Assume two random variables X and Y satisfy the following joint PDF, fXY (x, y) =...
Assume two random variables X and Y satisfy the following joint PDF, fXY (x, y) = { 2, x + y ≤ 1 x, y ≥ 0, 0, otherwise.} (a) Find the values of E[X + Y ] and E[X − Y ]. (b) Derive g(s) = E[X − Y |X + Y = s] for any given s. (c) Derive h(t) = E[X + Y |X − Y = t] for any given t.
Let continuous random variables X, Y be jointly continuous, with the following joint distribution fXY​(x,y) =...
Let continuous random variables X, Y be jointly continuous, with the following joint distribution fXY​(x,y) = e-x-y ​for x≥0, y≥0 and fXY(x,y) = 0 otherwise​. 1) Sketch the area where fXY​(x,y) is non-zero on x-y plane. 2) Compute the conditional PDF of Y given X=x for each nonnegative x. 3) Use the results above to compute E(Y∣X=x) for each nonnegative x. 4) Use total expectation formula E(E(Y∣X))=E(Y) to find expected value of Y.
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy...
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy for 0 < x < 2 and x < y < 2 (a) Find P(X < 1, Y < 1). (b) Use the joint pdf to find P(Y > 1). Be careful setting up your limits of integration. (c) Find the marginal pdf of Y , fY (y). Be sure to state the support. (d) Use the marginal pdf of Y to find P(Y...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0...
Suppose X and Y are continuous random variables with joint pdf f(x,y) = 2(x+y) if 0 < x < < y < 1 and 0 otherwise. Find the marginal pdf of T if S=X and T = XY. Use the joint pdf of S = X and T = XY.
The random variables X and Y have the joint PDF FX,Y(x,y) = { 6*e^-(3x + 2y)...
The random variables X and Y have the joint PDF FX,Y(x,y) = { 6*e^-(3x + 2y) 0 <= x, y { 0 otherwise (a) Show whether X and Y are independent or not. (b) Find the PDF of fX,Y |B(x,y) where B represents the event X + Y < 3 (c) Find fY | B(x) where B represents the event X + Y < 3
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy...
Suppose the continuous random variables X and Y have joint pdf: fXY (x, y) = (1/2)xy for 0 < x < 2 and x < y < 2 (a) Find P(Y < 2X) by integrating in the x direction first. Be careful setting up your limits of integration. (b) Find P(Y < 2X) by integrating in the y direction first. Be extra careful setting up your limits of integration. (c) Find the conditional pdf of X given Y = y,...
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0&
Random Variables X and Y have joint PDF fX,Y(x,y) =    c*(x+y)   ,    0<x , x>y                     0             ,     otherwise a. Find the value of the constant c. b. Find P[x < 1 and  y < 2]
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for...
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for 0 ≤ y ≤ x ≤ 1. Determine (a) E[X] and Var[X]. (b) E[Y ] and Var[Y ]. (c) Cov(X, Y ). (d) E[X + Y ]. (e) Var[X + Y ].