Let X be a discrete random variable with the pmf
p(x): 0.8 for x=-4,
0.1 for x=-2,
0.07 for x=0,
0.03 for x=2
a) Find E(2/X)
b) Find E(lXl)
c) Find Var(lXl)
p(x):
0.8 for x=-4,
0.1 for x=-2,
0.07 for x=0,
0.03 for x=2
a) E(2/X) = sum of [ (2/x)*p(x) ]
= (2/(-4))*(0.8) + (2/(-2))*(0.1) + (2/0)*(0.07) + (2/2)*(0.03)
= ∞ (undefined)
since (2/0) is present the value will be tending to infinity {or we can also say undefined}
b) E(lXl) = sum of [ (|x|)*p(x) ]
= (4)*(0.8) + (2)*(0.1) + (0)*(0.07) + (2)*(0.03)
E(lXl) = 3.46
c) Var(lXl)
Var(lXl) = E(lXl^2) - E(lXl)^2
E(lXl^2) = sum of (lXl^2 * p(x))
= 16*0.8 + 4*0.1 + 0*0.07 + 4*0.03
= 13.32
E(lXl)^2 = (3.46)^2 {E(|x|) calculated in previous part}
= 11.9716
Var(lXl) = E(lXl^2) - E(lXl)^2
= 13.32 - 11.9716
Var(lXl) = 1.3484
(please UPVOTE)
Get Answers For Free
Most questions answered within 1 hours.