Question

The time it takes for you to get to Sacramento airport is uniformly distributed between 40...

The time it takes for you to get to Sacramento airport is uniformly distributed between 40 minutes to 70 minutes. If you reach before 50 minutes, then you park in the economy parking lot. Otherwise you park in the garage. There are 3 stops between these parking areas and the departure terminal. If you park in the economy lot, then the time it takes between any two stops is exponentially distributed with average time equal to 20 minutes. If you park your vehicle in the garage, the time it takes between any two stops is exponentially distributed with average time equal to 10 minutes. Find the probabilities of the following scenarios while identifying the distributions used and showing complete integration work.

1. What is the probability that you reach the counter within 30 minutes after parking the vehicle?

2. Your buddy follows the same scenario as above and is lucky to park near the stop closest to the departure terminal. Your buddy tells you that it took them more than 15 minutes ride to the departure station. What is the probability that they parked in the garage?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose you record how long it takes you to get to school over many months and...
Suppose you record how long it takes you to get to school over many months and discover that the one-way travel times (including time to find parking and walk to your classroom), in minutes, are approximately normally distributed with a mean of 23.88 minutes and standard deviation of 5 minutes. A)If your first class starts at 10am and you leave at 9:40am, what is the probability that you will be late for class? B)You choose your departure time in such...
A) The amount of time it takes students to complete a quiz is uniformly distributed between...
A) The amount of time it takes students to complete a quiz is uniformly distributed between 35 to 65 minutes. One student is selected at random. Find the following events: a. The probability density function (pdf) of amount of time taken for the quiz. b. The probability that the student requires more than 50 minutes to complete the quiz.(1 mark) c. The probability that completed quiz time is between 45 and 55 minutes. (1 mark) d. The probability that the...
The time it takes for you to run around a pond near your house is uniformly...
The time it takes for you to run around a pond near your house is uniformly distributed between 30 and 40 minutes on sunny days, and uniformly distributed between 40 and 60 minutes on rainy days. Assume that a day is sunny with probability 2/3 and rainy with probability 1/3. Find the mean, and the variance of the time it takes for your run.
The time it takes for you to run around a pond near your house is uniformly...
The time it takes for you to run around a pond near your house is uniformly distributed between 30 and 40 minutes on sunny days, and uniformly distributed between 40 and 60 minutes on rainy days. Assume that a day is sunny with probability 2/3 and rainy with probability 1/3. Find the mean, and the variance of the time it takes for your run.
6. The length of time it takes a shopper to find a parking spot in the...
6. The length of time it takes a shopper to find a parking spot in the Costco parking lot follows a normal distribution with a mean of 4.5 minutes and a standard deviation of 1.2 minutes. What is the probability that a randomly selected shopper will take between 3 and 5 minutes to find a parking spot? Include 4 decimal places in your answer. 7. The amount of gold found by miners in Alaska per 1,000 tons of dirt follows...
The time it takes a random person to get a haircut is Normally Distributed, with an...
The time it takes a random person to get a haircut is Normally Distributed, with an average of 23.8 minutes and a standard deviation of 5 minutes. Assume that different people have independent times of getting their hair cut. Find the probability that, if there are four customers in a row (with no gaps in between), they will all be finished getting their hair cut in 1.5 hours (altogether) or less.
1/The time it takes me to wash the dishes is uniformly distributed between 6 minutes and...
1/The time it takes me to wash the dishes is uniformly distributed between 6 minutes and 14 minutes. What is the probability that washing dishes tonight will take me between 9 and 10 minutes? Give your answer accurate to two decimal places. 2/A local bakary has determined a probability distribution for the number of cheesecakes that they sell in a given day. X= #sold 0 5 10 15 20 Probability 0.29 0.26 0.27 ...? 0.06 What is the probability of...
The time between arrivals of taxis at a busy intersection is exponentially distributed with a mean...
The time between arrivals of taxis at a busy intersection is exponentially distributed with a mean of 10 minutes. (i) What is the probability that you wait longer than one hour for a taxi? (ii) Suppose that you have already been waiting for one hour for a taxi. What is the probability that one arrives within the next 10 minutes? (iii) Determine x such that the probability that you wait more than x minutes is 0.10. (iv) Determine x such...
Suppose you record how long it takes you to get to school over many months and...
Suppose you record how long it takes you to get to school over many months and discover that the one-way travel times (including time to find parking and walk to your classroom), in minutes, are approximately normally distributed with a mean of 23.88 minutes and standard deviation of 4 minutes. If your first class starts at 10am and you leave at 9:30am, what is the probability that you will be late for class? (Make sure to draw a picture for...
1. Suppose that the time it takes you to drive to work is a normally distributed...
1. Suppose that the time it takes you to drive to work is a normally distributed random variable with a mean of 20 minutes and a standard deviation of 4 minutes. a. the probability that a randomly selected trip to work will take more than 30 minutes equals: (5 pts) b. the expected value of the time it takes you to get to work is: (4 pts) c. If you start work at 8am, what time should you leave your...