Question

A basket contains 5 Red balls, 1 Blue ball and 1 Green ball. Three balls were...

A basket contains 5 Red balls, 1 Blue ball and 1 Green ball. Three balls were selected randomly without replacement. Find the probability that the three selected balls contain at least two red balls.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Box 1 contains 4 red balls, 5 green balls and 1 yellow ball. Box 2 contains...
Box 1 contains 4 red balls, 5 green balls and 1 yellow ball. Box 2 contains 3 red balls, 5 green balls and 2 yellow balls. Box 3 contains 2 red balls, 5 green balls and 3 yellow balls. Box 4 contains 1 red ball, 5 green balls and 4 yellow balls. Which of the following variables have a binomial distribution? (I) Randomly select three balls from Box 1 with replacement. X = number of red balls selected (II) Randomly...
Bag 1 contains six red balls, seven blue balls, and three green balls. Bag 2 contains...
Bag 1 contains six red balls, seven blue balls, and three green balls. Bag 2 contains eight red balls, eight blue balls, and two green balls. Bag 3 contains two red balls, nine blue balls, and eight green balls. Bag 4 contains four red balls, seven blue balls, and no green balls. Bag 1 is chosen with a probability of 0.15, bag 2 with a probability of 0.20, bag 3 with a probability of 0.35, and bag 4 with a...
Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls...
Conditional Probability Problem: An urn contains 5 red balls, 4 green balls, and 4 yellow balls for a total of 13 balls. If 5 balls are randomly selected without replacement, what is the probability of selecting at least two red balls given that at least one yellow ball is selected? Please show all steps.
An urn contains 6 green ball, 7 blue balls and 5 yellow balls. You are asked...
An urn contains 6 green ball, 7 blue balls and 5 yellow balls. You are asked to draw 3 balls, one at a time (without replacement). Find the probability that a green is pulled first, then another green ball then a blue ball.
An urn contains 9 red balls, 7 blue balls and 6 green balls. A ball is...
An urn contains 9 red balls, 7 blue balls and 6 green balls. A ball is selected and its color is noted then it is placed back to the urn. A second ball is selected and its color is noted. Find the probability that the color of one of the balls is red and the color of the other ball is blue. A. 0.2603 B. 0.2727 C. 0.4091 D. 0.3430
A bowl contains 5 blue, 4 red, and 3 green balls. Balls are drawn from it...
A bowl contains 5 blue, 4 red, and 3 green balls. Balls are drawn from it one at a time without replacement until 2 red balls are drawn. Let X = the number of blue balls that were drawn. Find E(X).
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen...
A box contains one yellow, two red, and three green balls. Two balls are randomly chosen without replacement. Define the following events: A:{ One of the balls is yellow } B:{ At least one ball is red } C:{ Both balls are green } D:{ Both balls are of the same color } Find the following conditional probabilities: P(B\Ac)= P(D\B)=
An urn contains five blue, six green and seven red balls. You choose five balls at...
An urn contains five blue, six green and seven red balls. You choose five balls at random from the urn, without replacement (so you do not put a ball back in the urn after you pick it), what is the probability that you chose at least one ball of each color?(Hint: Consider the events: B, G, and R, denoting respectively that there are no blue, no green and no red balls chosen.)
An urn contains 10 balls, 2 red, 5 blue, and 3 green balls. Take out 3...
An urn contains 10 balls, 2 red, 5 blue, and 3 green balls. Take out 3 balls at a random, without replacement. You win $2 for each green ball you select and lose $3 for each red ball you select. Let the random variable X denote the amount you win, determine the probability mass function of X.
An urn contains 7 red balls, 18 blue balls and 15 green balls. A ball is...
An urn contains 7 red balls, 18 blue balls and 15 green balls. A ball is selected and its color is noted and then it is placed back to the urn. A second ball is selected and its color is noted. Find the probability of that both balls has the same color. A. 0.1575 B. 0.3738 C. 0.3750 D. 0.1750
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT