Question

4. Suppose that we have X1, · · · Xn iid∼ N(µ, σ2 ) (a) Derive...

4. Suppose that we have X1, · · · Xn iid∼ N(µ, σ2 )

(a) Derive a 100(1 − α)% confidence interval for σ 2 when µ is unknown.

(b) Derive a α−test for σ 2 when hypotheses is given as:

H0 : σ^2 = σ^2sub0 vs H1 : σ^2 < σ^2sub0 .

where σ 2 0 > 0 and µ is unknown.

I am particularly struggling with b. Part a I could do.

Homework Answers

Answer #1

---------------------------------------------------------------------------------------

Dear student,

I have given my 100% to solve your problem.

Please help me out by giving thumbs up.

Thank you so much.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
X1, · · · Xn ~ iid N(µ, σ2 ) (a) Derive a 100(1 − α)%...
X1, · · · Xn ~ iid N(µ, σ2 ) (a) Derive a 100(1 − α)% confidence interval for σ2 when µ is unknown. (b) Derive a α−test for σ2 when H0 : σ2 = σ02  vs H1 : σ2 < σ02  Where σ02 > 0 and µ is unknown.
Suppose that X1,..Xn are iid N(0,σ2) where σ>0 is the unknown parameter. with preassigned α in...
Suppose that X1,..Xn are iid N(0,σ2) where σ>0 is the unknown parameter. with preassigned α in (0,1), derive a level α LR test for the null hypothesis H0: σ2 = σ02 against H1: σ2/=σ02 in the implementable form. (Hint: When is the function g(u) = ue1-u, u > 0 increasing? When is it decreasing? Is your test one-sided or two-sided?)
Suppose X1, · · · , Xn from a normal distribution N(µ, σ2 ) where µ...
Suppose X1, · · · , Xn from a normal distribution N(µ, σ2 ) where µ is unknown but σ is known. Consider the following hypothesis testing problem: H0 : µ = µ0 vs. Ha : µ > µ0 Prove that the decision rule is that we reject H0 if X¯ − µ0 σ/√ n > Z(1 − α), where α is the significant level, and show that this is equivalent to rejecting H0 if µ0 is less than the...
Let X1, . . . , Xn ∼ iid N(θ, σ^2 ) for σ ^2 known....
Let X1, . . . , Xn ∼ iid N(θ, σ^2 ) for σ ^2 known. Find the UMP size-α test for H0 : θ ≥ θ0 vs H1 : θ < θ0.
Let X1,.....,Xn be a random sample from N(μ,σ2), and both μ and σ2 are unknown, with...
Let X1,.....,Xn be a random sample from N(μ,σ2), and both μ and σ2 are unknown, with -∞<μ<∞ and σ2 > 0. a. Develop a likelihood ratio test for H0: μ <= μ0 vs. H1: μ > μ0 b. Develop a likelihood ratio test for H0: μ >= μ0 vs. H1: μ < μ0
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3....
Suppose that X1,...,Xn are iid N(μ,σ2) where μ is unknown but σ is known.  μ>=2. Let z(μ)=μ3. Find an initial unbiased estimator T for z(μ). Next, derive the Rao-Blackwellized version of T.
Exercise 4. Suppose that X = (X1, · · · , Xn) is a random sample...
Exercise 4. Suppose that X = (X1, · · · , Xn) is a random sample from a normal distribution with unknown mean µ and known variance σ^2 . We wish to test the following hypotheses at the significance level α. Suppose the observed values are x1, · · · , xn. For each case, find the expression of the p-value, and state your decision rule based on the p-values a. H0 : µ = µ0 vs. Ha : µ...
Suppose that X1,..., Xn∼iid N(μ,σ2). a) Suppose that μ is known. What is the MLE of...
Suppose that X1,..., Xn∼iid N(μ,σ2). a) Suppose that μ is known. What is the MLE of σ? (b) Suppose that σ is known. What is the MLE of μ? (c) Suppose that σ is known, and μ has a prior distribution that is normal with known mean and variance μ0 and σ02. Find the posterior distribution of μ given the data.
Problem 2 Let X1, · · · , Xn IID∼ N(θ, θ) with θ > 0....
Problem 2 Let X1, · · · , Xn IID∼ N(θ, θ) with θ > 0. Find a pivotal quantity and use it to construct a confidence interval for θ.
Let X1, . . . , Xn ∼ iid Beta(θ, 1). (a) Find the UMP test...
Let X1, . . . , Xn ∼ iid Beta(θ, 1). (a) Find the UMP test for H0 : θ ≥ θ0 vs H1 : θ < θ0. (b) Find the corresponding Wald test. (c) How do these tests compare and which would you prefer?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT