Question

Consider the data. xi 1 2 3 4 5 yi 3 7 5 11 14 The...

Consider the data.

xi

1 2 3 4 5

yi

3 7 5 11 14

The estimated regression equation for these data is

ŷ = 0.20 + 2.60x.

(a)

Compute SSE, SST, and SSR using equations

SSE = Σ(yiŷi)2,

SST = Σ(yiy)2,

and

SSR = Σ(ŷiy)2.

SSE = SST = SSR =

(b)

Compute the coefficient of determination

r2.

r2

=

Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.)

The least squares line provided a good fit as a small proportion of the variability in y has been explained by the least squares line.The least squares line provided a good fit as a large proportion of the variability in y has been explained by the least squares line.     The least squares line did not provide a good fit as a small proportion of the variability in y has been explained by the least squares line.The least squares line did not provide a good fit as a large proportion of the variability in y has been explained by the least squares line.

(c)

Compute the sample correlation coefficient. (Round your answer to three decimal places.)

Homework Answers

Answer #1

a)

x y residual,ei=y-yhat SSE = (Y-Ŷ)² SST=(Y-Ȳ)² SSR= Σ(Ŷ - Ȳ)²
1 3 0.000 3.000 9.00 25 0.00
2 7 0.000 7.000 49.00 1 0.00
3 5 0.000 5.000 25.00 9 0.00
4 11 0.000 11.000 121.00 9 0.00
5 14 0.000 14.000 196.00 36 0.00

SSE=   (SSxx * SSyy - SS²xy)/SSxx =    12.4

SSR = 67.6

SST = 80.0

B)

ΣX ΣY Σ(x-x̅)² Σ(y-ȳ)² Σ(x-x̅)(y-ȳ)
total sum 15 40 10 80.0 26.00
mean 3.00 8.00 SSxx SSyy SSxy

R² =    (Sxy)²/(Sx.Sy) =    0.845

The least squares line provided a good fit as a large proportion of the variability in y has been explained by the least squares line.

C)

correlation coefficient ,    r = Sxy/√(Sx.Sy) =   0.9192

Please revert back in case of any doubt.

Please upvote. Thanks in advance.


Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the data. xi 1 2 3 4 5 yi 3 7 4 10 12 The...
Consider the data. xi 1 2 3 4 5 yi 3 7 4 10 12 The estimated regression equation for these data is ŷ = 0.90 + 2.10x. (a) Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2, SST = Σ(yi − y)2, and SSR = Σ(ŷi − y)2. SSE=SST=SSR= (b) Compute the coefficient of determination r2. r2 = Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is...
Consider the data. xi 1 2 3 4 5 yi 3 7 4 10 12 The...
Consider the data. xi 1 2 3 4 5 yi 3 7 4 10 12 The estimated regression equation for these data is ŷ = 0.90 + 2.10x. (a)Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2,SST = Σ(yi − y)2,and SSR = Σ(ŷi − y)2. SSE= SST= SSR= (b)Compute the coefficient of determination r2. r2= Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it is at least 0.55.)...
Consider the data. xi 1 2 3 4 5 yi 4 7 6 10 13 The...
Consider the data. xi 1 2 3 4 5 yi 4 7 6 10 13 The estimated regression equation for these data is ŷ = 1.70 + 2.10x. (a) Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2, SST = Σ(yi − y)2, and SSR = Σ(ŷi − y)2. SSE= SST= SSR= (b) Compute the coefficient of determination r2. r2= Comment on the goodness of fit. (For purposes of this exercise, consider a proportion large if it...
Consider the data. xi 3 12 6 20 14 yi 65 35 50 15 20 The...
Consider the data. xi 3 12 6 20 14 yi 65 35 50 15 20 The estimated regression equation for these data is ŷ = 70 − 3x. (a) Compute SSE, SST, and SSR using equations SSE = Σ(yi − ŷi)2, SST = Σ(yi − y)2, and SSR = Σ(ŷi − y)2. SSE = SST = SSR = (b) Compute the coefficient of determination r2. (Round your answer to three decimal places.) r2 = Comment on the goodness of fit....
A sales manager collected the following data on x = years of experience and y =...
A sales manager collected the following data on x = years of experience and y = annual sales ($1,000s). The estimated regression equation for these data is ŷ = 82 + 4x. Salesperson Years of Experience Annual Sales ($1,000s) 1 1 80 2 3 97 3 4 102 4 4 107 5 6 103 6 8 101 7 10 119 8 10 128 9 11 127 10 13 136 (a) Compute SST, SSR, and SSE. SST = SSR = SSE...
The following data show the brand, price ($), and the overall score for six stereo headphones...
The following data show the brand, price ($), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ŷ = 22.324 + 0.327x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 78 B 150 69 C 95...
The following data show the brand, price ($), and the overall score for six stereo headphones...
The following data show the brand, price ($), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ŷ = 24.331 + 0.307x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 74 B 150 71 C 95...
The following data show the brand, price ($), and the overall score for six stereo headphones...
The following data show the brand, price ($), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ŷ = 21.656 + 0.333x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 76 B 150 73 C 95...
The following data show the brand, price ($), and the overall score for six stereo headphones...
The following data show the brand, price ($), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ŷ = 23.127 + 0.319x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 74 B 150 73 C 95...
The following data show the brand, price ($), and the overall score for six stereo headphones...
The following data show the brand, price ($), and the overall score for six stereo headphones that were tested by a certain magazine. The overall score is based on sound quality and effectiveness of ambient noise reduction. Scores range from 0 (lowest) to 100 (highest). The estimated regression equation for these data is ŷ = 25.465 + 0.305x, where x = price ($) and y = overall score. Brand Price ($) Score A 180 78 B 150   69 C 95...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT