Question

The actual arrival time of the scheduled 10:20 a.m. bus at the alpine and Broadway stop...

The actual arrival time of the scheduled 10:20 a.m. bus at the alpine and Broadway stop is a uniformly distributed random variable ranging from 10:18 to 10:23. (a) What is the average arrival time of the 10:20 a.m. bus? (b) The standard deviation? (c) What is the probability that the bus is early? (d) What is the probability that the bus arrives between 10:19 and 10:21 a.m.?

Homework Answers

Answer #1

It means unoform distribution is between 18 to 23 minutes

a)

here a=   18
b=   23

mean =    (a+b)/2 =    20.5

Average arrval time = 10.20 minutes and 30 seconds

b)

variance =    (b-a)²/12 =    2.083333333
      
std dev =   √ variance =    1.44

c)

x = 20

P(X ≤ x) =    (x-a)/(b-a) =    0.4

d)

x1 =   19
x2=   21

P (    19   ≤ X ≤    21   ) =(x2-x1)/(b-a) =    0.4


Please revert in case of any doubt.

Please upvote. Thanks in advance

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Alice takes the bus to school. The bus is scheduled to arrive at a bus stop...
Alice takes the bus to school. The bus is scheduled to arrive at a bus stop at 9:30am. In reality, the time the bus arrives is uniformly distributed between 9:28am and 9:40am. Let ? be the number of minutes it takes, starting from 9:28 am, for the bus to arrive to the bus stop. Then ? is uniformly distributed between 0 and 12 minutes. (a) If Alice arrives at the bus stop at exactly 9:33 am, what is the probability...
A passenger arrives at a bus stop at 10am and waits for a bus that arrives...
A passenger arrives at a bus stop at 10am and waits for a bus that arrives at a time uniformly distributed between 10am and 10:30am. (a) What is the probability that the passenger waits more than 10 minutes? (b) What is the expected wait time? (c) What is the variance in wait time?
You arrive at a bus stop at 10 o’clock knowing that the bus arrives at the...
You arrive at a bus stop at 10 o’clock knowing that the bus arrives at the stop at some time uniformly distribution between 9:55 and 10:10. What is the probability that you will be board the bus within 2 minutes of your arrivals?
I arrive at a bus stop at a time that is normally distributed with mean 07:59...
I arrive at a bus stop at a time that is normally distributed with mean 07:59 and SD 1.5 minutes. My bus arrives at the stop at an independent normally distributed time with mean 08:03 a.m. and SD 2 minutes. The bus remains at the stop for 1 minute and then leaves. What is the chance that I miss the bus?
Problem 3. Alice is waiting for a bus at a bus stop. She needs to take...
Problem 3. Alice is waiting for a bus at a bus stop. She needs to take a bus number 10 or 12, and she takes the first suitable bus that arrives. The arrival time of bus 10 is exponential with λ10 = 6/19, and the arrival time of bust 12 is exponential with λ12 = 3/19. Moreover, arrival times of 10 and 12 are independent. What is the probability that Alice will take bus number 10 instead of bus number...
Suppose that buses are scheduled to arrive at a bus stop at noon but are always...
Suppose that buses are scheduled to arrive at a bus stop at noon but are always X minutes late, where X is an exponential random variable. Suppose that you arrive at the bus stop precisely at noon. (a) Compute the probability that you have to wait for more than five minutes for the bus to arrive. (b) Suppose that you have already waiting for 10 minutes. Compute the probability that you have to wait an additional five minutes or more.
4.) SWA university provides bus service to students while they are on campus. A bus arrives...
4.) SWA university provides bus service to students while they are on campus. A bus arrives at the North main Street and College Drive stop every 30 minutes between 6am and 11am during weekdays. Students arrive at the bus stop at random times. A time that a student waits is uniformly distributed from 0 to 30 minutes. What is the probability a student will wait between 10 and 20 minutes? Please show work using Excel.
The number of buses arriving at the bus stop for T minutes is defined as a...
The number of buses arriving at the bus stop for T minutes is defined as a random variable B. The average (expected value) of random variable B is T / 5. (1)A value indicating the average number of occurrences per unit time in the Poisson distribution. What is the average rate of arrival per second? (2)find PMF of B (3)Find the probability of 3 buses arriving in 2 minutes (4)Find the probability that the bus will not arrive in 10...
Quiz 4. John's answering machine receives about 7 telephone calls between 8 a.m. and 10 a.m....
Quiz 4. John's answering machine receives about 7 telephone calls between 8 a.m. and 10 a.m. What is the probability that John receives exactly one phone call between 9:00 am and 9:15 am? 5. Bus waiting time is uniformly distributed with the shortest and the longest waiting times being 9 and 21 minutes respectively. What is the standard deviation of the average waiting time of 46 passenger 6. The amount of time spouses shop for anniversary cards can be modeled...
John and Jane are working on a project, and all of their project meetings are scheduled...
John and Jane are working on a project, and all of their project meetings are scheduled to start at 9:00. John always arrives promptly at 9:00. Jane is highly disorganized and arrives at a time that is uniformly distributed between 8:45 and 10:28. The time (measured in minutes, a real number that can take fractional values) between 8:45 and the time Jane arrives is thus a continuous, uniformly distributed random variable. If Jane arrives before 9:00, their project meeting will...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT