Question

A distribution of values is normal with a mean of 80 and a standard deviation of...

A distribution of values is normal with a mean of 80 and a standard deviation of 22. From this distribution, you are drawing samples of size 34.

Find the interval containing the middle-most 36% of sample means:

Enter answer using interval notation. In this context, either inclusive or exclusive intervals would be acceptable. Your numbers should be accurate to 1 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.

Homework Answers

Answer #1

From Z-table, Lookup for Z-value corresponding to area 0.32 to the left of the normal curve.

From Z-table, Lookup for Z-value corresponding to area 0.32 to the right of the normal curve.

The interval containing the middle-most 36% of sample means:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A distribution of values is normal with a mean of 130 and a standard deviation of...
A distribution of values is normal with a mean of 130 and a standard deviation of 27. From this distribution, you are drawing samples of size 31. Find the interval containing the middle-most 84% of sample means: Enter your answer using interval notation in the form (a,b). In this context, either inclusive or exclusive intervals would be acceptable. Your numbers should be accurate to 1 decimal places. Answers obtained using z-scores rounded to 2 decimal places are accepted.
A distribution of values is normal with a mean of 65.2 and a standard deviation of...
A distribution of values is normal with a mean of 65.2 and a standard deviation of 7.4. Find P32, which is the score separating the bottom 32% from the top 68%. P32 = Enter your answer as a number accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A distribution of values is normal with a mean of 187.9 and a standard deviation of...
A distribution of values is normal with a mean of 187.9 and a standard deviation of 20.4. Find P10, which is the score separating the bottom 10% from the top 90%. P10 = Enter your answer as a number accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A distribution of values is normal with a mean of 247.9 and a standard deviation of...
A distribution of values is normal with a mean of 247.9 and a standard deviation of 5.9. Find P8, which is the score separating the bottom 8% from the top 92%. P8 = Enter your answer as a number accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted. Explain how you found P8.
1. A distribution of values is normal with a mean of 70.8 and a standard deviation...
1. A distribution of values is normal with a mean of 70.8 and a standard deviation of 50.9. Find the probability that a randomly selected value is less than 4.6. P(X < 4.6) = 2. A distribution of values is normal with a mean of 66 and a standard deviation of 4.2. Find the probability that a randomly selected value is greater than 69.4. P(X > 69.4) = Enter your answer as a number accurate to 4 decimal places. Answers...
A population of values has a normal distribution with μ=65.3μ=65.3 and σ=42.4σ=42.4. You intend to draw...
A population of values has a normal distribution with μ=65.3μ=65.3 and σ=42.4σ=42.4. You intend to draw a random sample of size n=242n=242. Find P34, which is the mean separating the bottom 34% means from the top 66% means. P34 (for sample means) = Enter your answers as numbers accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A population of values has a normal distribution with μ = 245.6 and σ = 59.3...
A population of values has a normal distribution with μ = 245.6 and σ = 59.3 . You intend to draw a random sample of size n = 21. Find P91, which is the mean separating the bottom 91% means from the top 9% means. P91 (for sample means) = 100.42 Enter your answers as numbers accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A population of values has a normal distribution with μ=144.2μ=144.2 and σ=96.9σ=96.9. You intend to draw...
A population of values has a normal distribution with μ=144.2μ=144.2 and σ=96.9σ=96.9. You intend to draw a random sample of size n=47n=47. Find P35, which is the mean separating the bottom 35% means from the top 65% means. P35 (for sample means) = Enter your answers as numbers accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
A population of values has a normal distribution with μ=87.4μ=87.4 and σ=41σ=41. You intend to draw...
A population of values has a normal distribution with μ=87.4μ=87.4 and σ=41σ=41. You intend to draw a random sample of size n=106n=106. Find P6, which is the mean separating the bottom 6% means from the top 94% means. P6 (for sample means) = Enter your answers as numbers accurate to 1 decimal place. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution...
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution with μ=77 and σ=9.2. You intend to draw a random sample of size n=30. Find the probability that a sample of size n=30n=30 is randomly selected with a mean less than 76.8. P(M < 76.8) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.