Question

QUESTION : Given: fx,y(x,y)=be^-(x+y) for 0<x<a and 0<y<Infinity and =0 elsewhere a) Use Property 2 to...

QUESTION :

Given: fx,y(x,y)=be^-(x+y) for 0<x<a and 0<y<Infinity and =0 elsewhere
a) Use Property 2 to determine the value of b that will make this a valid density function. Ans: b=1/(1-e^-a)
b) Use Property 3 to determine Fx,y(x,y) Ans: Fxy=(1-e^-x)(1-e^-y)/(1-e^-a)
c) Take the derivative of Fx,y(x,y) to show that it equals fx,y(x,y).

ANSWERS ARE GIVEN FOR A,B JUST PROVIDE THE STEPS

Properties of Joint Distribution Functions:

2) ??,?(∞, ∞) = ?

Example Given: ??,?(?, ?) = 0.2?(? − 1)?(? − 1) + 0.3?(? − 2)?(? − 1) + 0.5?(? − 3)?(? − 3) Then ??,?(+∞, +∞)

=

3) ? ≤ ??,?(?, ?) ≤ ?

Proof: This must be the valid range since 4a and 4b show that 0 and 1 are in the range and probability outside this range is impossible.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2)...
4.4-JG1 Given the following joint density function in Example 4.4-1: fx,y(x,y)=(2/15)d(x-x1)d(y-y1)+(3/15)d(x-x2)d(y-y1)+(1/15)d(x-x2)d(y-y2)+(4/15)d(x-x1)d(y-y3) a) Determine fx(x|y=y1) Ans: 0.4d(x-x1)+0.6d(x-x2) b) Determine fx(x|y=y2) Ans: 1d(x-x2) c) Determine fy(y|x=x1) Ans: (1/3)d(y-y1)+(2/3)d(y-y3) d) Determine fx(y|x=x2) Ans: (3/9)d(y-y1)+(1/9)d(y-y2)+(5/9)d(y-y3) 4.4-JG2 Given fx,y(x,y)=2(1-xy) for 0 a) fx(x|y=0.5) (Point Conditioning) Ans: (4/3)(1-x/2) b) fx(x|0.5
the random variable x and y have joint density function given by fx,y={ A(1+x). , 0<=x<=1;0<=y<=3...
the random variable x and y have joint density function given by fx,y={ A(1+x). , 0<=x<=1;0<=y<=3 0 elsewhere 3.1 determine the value of constant A for proper p.d.f ?3.2 find the expected values of X and Y?3.3. obtain the covariance of X and Y?3.4 determine if x and y are statistically independent.
A joint density function is given by fX,Y (x, y) = ( kx, 0 < x...
A joint density function is given by fX,Y (x, y) = ( kx, 0 < x < 1, 0 < y < 1 0, otherwise. (a) Calculate k (b) Calculate marginal density function fX(x) (c) Calculate marginal density function fY (y) (d) Compute P(X < 0.5, Y < 0.1) (e) Compute P(X < Y ) (f) Compute P(X < Y |X < 0.5) (g) Are X and Y independent random variables? Show your reasoning (no credit for yes/no answer). (h)...
Consider two random variables, X and Y, with joint PDF fxy(x,y)=e-2|y-x^2|-x    x>=0 , y can...
Consider two random variables, X and Y, with joint PDF fxy(x,y)=e-2|y-x^2|-x    x>=0 , y can be any value fxy(x,y)=0 otherwise (1) Determine fY|X(y|x) (2)Determine E[Y|X=x]
The joint PDF of X and Y is given by fX,Y(x, y) = nx^ne^(?xy) , 0...
The joint PDF of X and Y is given by fX,Y(x, y) = nx^ne^(?xy) , 0 < x < 1, y > 0, where n is an integer and n > 2. (a) Find the marginal PDF of X and its mean. (b) Find the conditional PDF of Y given X = x. (c) Deduce the conditional mean and the conditional variance of Y given X = x. (d) Find the mean and variance of Y . (e) Find the...
CDF of random variable X is given by: FX(x) = 0 x < -3 (x/2 +...
CDF of random variable X is given by: FX(x) = 0 x < -3 (x/2 + 3/2)   -3 < x < -2 (x/8 + ¾)      -2 < x < 2 1                      x > 2 Find the possible range of values that the random variable can take. Find E(X) = µX, the expected value Find P(X ≥ 1)
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the...
part 1) Find the partial derivatives of the function f(x,y)=xsin(7x^6y): fx(x,y)= fy(x,y)= part 2) Find the partial derivatives of the function f(x,y)=x^6y^6/x^2+y^2 fx(x,y)= fy(x,y)= part 3) Find all first- and second-order partial derivatives of the function f(x,y)=2x^2y^2−2x^2+5y fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 4) Find all first- and second-order partial derivatives of the function f(x,y)=9ye^(3x) fx(x,y)= fy(x,y)= fxx(x,y)= fxy(x,y)= fyy(x,y)= part 5) For the function given below, find the numbers (x,y) such that fx(x,y)=0 and fy(x,y)=0 f(x,y)=6x^2+23y^2+23xy+4x−2 Answer: x= and...
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for...
2. Random variables X and Y have a joint PDF fX,Y (x, y) = 2 for 0 ≤ y ≤ x ≤ 1. Determine (a) E[X] and Var[X]. (b) E[Y ] and Var[Y ]. (c) Cov(X, Y ). (d) E[X + Y ]. (e) Var[X + Y ].
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B....
(1 point) Find all the first and second order partial derivatives of f(x,y)=7sin(2x+y)−2cos(x−y) A. ∂f∂x=fx=∂f∂x=fx= B. ∂f∂y=fy=∂f∂y=fy= C. ∂2f∂x2=fxx=∂2f∂x2=fxx= D. ∂2f∂y2=fyy=∂2f∂y2=fyy= E. ∂2f∂x∂y=fyx=∂2f∂x∂y=fyx= F. ∂2f∂y∂x=fxy=∂2f∂y∂x=fxy=
Let fx,y (x,y) = 3 e^-(x+y) for 0 < x <1/2y and y>0. a) Find f...
Let fx,y (x,y) = 3 e^-(x+y) for 0 < x <1/2y and y>0. a) Find f x(x) and f y( y) .  b) Write out the integral necessary to find , Fx,y ( u v) . DO NOT EVALUATE THE INTEGRAL.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT