Question

In a random sample of 100 basketball players, the average vertical jump was 38 inches. Suppose...

In a random sample of 100 basketball players, the average vertical jump was 38 inches. Suppose the standard deviation for all basketball players’ vertical jumps is 10 inches.
a. Determine a 95% confidence interval for the average vertical jump and determine the margin of error.
b. Interpret your result.
c. If you want a margin of error of only 1 inch in the 95% confidence interval, determine the number of basketball players you would need to sample. show all work

Homework Answers

Answer #1

If there is any understanding problem regarding this please feel free to ask any doubt in comment box. Thank you m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a random sample of 50 basketball players have an average height of 78 inches. Also...
Suppose a random sample of 50 basketball players have an average height of 78 inches. Also assume that the population standard deviation is 1.5 inches. a) Find a 99% confidence interval for the population mean height. b) Find a 95% confidence interval for the population mean height. c) Find a 90% confidence interval for the population mean height. d) Find an 80% confidence interval for the population mean height. e) What do you notice about the length of the confidence...
Four basketball teams took a random sample of players regarding how high each player can jump...
Four basketball teams took a random sample of players regarding how high each player can jump (in inches). The results are in Table 13.15: Team 1 Team 2 Team 3 Team 4 Team 5 36 32 48 38 41 42 35 50 44 39 51 38 39 46 40 At the 5% significance level, is there a difference in the mean jump heights among the teams? a. Yes there is b. No there isn't
#2. A random sample of 25 professional basketball players shows a mean height of 6 feet,...
#2. A random sample of 25 professional basketball players shows a mean height of 6 feet, 5 inches with a 95% confidence interval of 0.4 inches. Explain what this indicates. If the sample were smaller, would the confidence interval become smaller or larger? Explain. If you wanted a higher level of confidence (99%) would the confidence interval become smaller or larger? Explain.
The population standard deviation for the height of college basketball players is 2.9 inches. If we...
The population standard deviation for the height of college basketball players is 2.9 inches. If we want to estimate 92% confidence interval for the population mean height of these players with a 0.6 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
The population standard deviation for the height of college basketball players is 3.1 inches. If we...
The population standard deviation for the height of college basketball players is 3.1 inches. If we want to estimate 99% confidence interval for the population mean height of these players with a 0.58 margin of error, how many randomly selected players must be surveyed? (Round up your answer to nearest whole number)
The population standard deviation for the height of college basketball players is 3 inches. If we...
The population standard deviation for the height of college basketball players is 3 inches. If we want to estimate 99% confidence interval for the population mean height of these players with a 0.7 margin of error, how many randomly selected players must be surveyed?  (Round up your answer to nearest whole number)
The population standard deviation for the height of high school basketball players is 1.9 inches. If...
The population standard deviation for the height of high school basketball players is 1.9 inches. If we want to be 95% confident that the sample mean height is within 0.8 inch of the true population mean height, how many randomly selected students must be surveyed? Fill in the blank: n=
The population standard deviation for the height of high school basketball players is 2.5 inches. If...
The population standard deviation for the height of high school basketball players is 2.5 inches. If we want to be 95% confident that the sample mean height is within 0.4 inch of the true population mean height, how many randomly selected students must be surveyed? Fill in the blank: n=
The population standard deviation for the height of high school basketball players is 4.6 inches. If...
The population standard deviation for the height of high school basketball players is 4.6 inches. If we want to be 95% confident that the sample mean height is within 0.4 inch of the true population mean height, how many randomly selected students must be surveyed? Fill in the blank: n=
A sample of 45 pro football players had an average height of 6.179ft with a sample...
A sample of 45 pro football players had an average height of 6.179ft with a sample standard deviation of 0.366ft and a sample of 40 pro basketball players had a mean height of 6.453ft with a sample standard deviation of 0.314ft. If mu1 is the mean height for all football players and mu2 is the mean height of all basketball players, find a 90% confidence interval for mu1 - mu2. Interpret the confidence interval in the context of the problem.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT