Question

Deriving fair coin flips from biased coins: From coins with uneven heads/tails probabilities construct an experiment...

Deriving fair coin flips from biased coins: From coins with uneven heads/tails probabilities construct an experiment for which there are two disjoint events, with equal probabilities, that we call "heads" and "tails".

a. given c1 and c2, where c1 lands heads up with probability 2/3 and c2 lands heads up with probability 1/4, construct a "fair coin flip" experiment.

b. given one coin with unknown probability p of landing heads up, where 0 < p < 1, construct a "fair coin flip" experiment. Note: the sample space may contain outcomes that are not a member of either event; if such an outcome occurs, we ignore the result and perform a new trial.

c. in your solution to the previous part, what is the chance that a single trial results in an outcome of either heads or tails?

Homework Answers

Answer #1

See The following images carefully. If you didn't understand anything, let me know in the comment section.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A black bag contains two coins: one fair, and the other biased (with probability 3/4 of...
A black bag contains two coins: one fair, and the other biased (with probability 3/4 of landing heads). Suppose you pick a coin from the bag — you are twice as likely to pick the fair coin as the biased one — and flip it 8 times. Given that three of the first four flips land heads, what is the expected number of heads in the 8 flips?
You are flipping a fair coin with one side heads, and the other tails. You flip...
You are flipping a fair coin with one side heads, and the other tails. You flip it 30 times. a) What probability distribution would the above most closely resemble? b) If 8 out of 30 flips were heads, what is the probability of the next flip coming up heads? c) What is the probability that out of 30 flips, not more than 15 come up heads? d) What is the probability that at least 15 out 30 flips are heads?...
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin...
Suppose I have two biased coins: coin #1, which lands heads with probability 0.9999, and coin #2, which lands heads with probability 0.1. I conduct an experiment as follows. First I toss a fair coin to decide which biased coin I pick (say, if it lands heads, I pick coin #1, and otherwise I pick coin #2) and then I toss the biased coin twice. Let A be the event that the biased coin #1 is chosen, B1 the event...
A selection of coin is known to be either fair (with a probability 0.5 of coming...
A selection of coin is known to be either fair (with a probability 0.5 of coming up heads or tails when flipped) or biased (with a probability 0.75 of tails, 0.25 of heads.) Further. it is known that 1/10 of the coins are biased. a) You select a coin at random. What are the prior odds (not probability) that you have picked a biased coin? b) You select a coin at random and flip it; you get tails. What are...
In a situation where we have a biased coin that is tails with probability 0.7 and...
In a situation where we have a biased coin that is tails with probability 0.7 and we independently flip it 10 times. Find the following probabilities. 1. getting the sequence HTHHHTHTTH? 2. exactly 4 tails? 3. at least 4 tails? 4. expected number of tails? expected number of heads?
We have two coins whose heads are marked 2 and tails marked 1. One is a...
We have two coins whose heads are marked 2 and tails marked 1. One is a fair coin and the other is a biased coin whose probabilities of 'Head' are 1/2 and 1/4 respectively.Suppose we toss the two coins simultaneously. Let S and P be the sum and product of all the outcome numbers on the coins, respectively. 1. Compute the mean and variance of S. Calculate up to 3 decimal places (round the number at 4th place) if necessary....
One fair coin and two unfair coins where heads is 5 times as likely as tails...
One fair coin and two unfair coins where heads is 5 times as likely as tails are put into a bag. One coin is drawn at random and then flipped twice. If at least one of the flips was tails, what is the probability an unfair coin was flipped? Every day, Janet either takes the bus or drives her car to work. She drives her car 30% of the time. When she drives her car, she packs her lunch 70%...
Consider the experiment of flipping 3 coins. Determine the following probabilities: A) what is the probability...
Consider the experiment of flipping 3 coins. Determine the following probabilities: A) what is the probability that the second coin is heads? B) what is the probability that the second coin is heads given that either the first coin was tails or the third coin was tails? Now consider again the experiment of rolling a pair of dice. Determine the following. A) what is the probability that the first die comes up less than 5? B) what is the probability...
Consider two coins, one fair and one unfair. The probability of getting heads on a given...
Consider two coins, one fair and one unfair. The probability of getting heads on a given flip of the unfair coin is 0.10. You are given one of these coins and will gather information about your coin by flipping it. Based on your flip results, you will infer which of the coins you were given. At the end of the question, which coin you were given will be revealed. When you flip your coin, your result is based on a...
Part 1. Two fair coins are tossed and we are told that one turned up “Heads”....
Part 1. Two fair coins are tossed and we are told that one turned up “Heads”. What is the probability that the other turned up “Tails”? Part 2. Two fair coins are tossed, and we get to see only one, which happened to turn up “Heads”. What is the probability that the hidden coin turned up “Tails”? *Remark This problem is really different from the previous one!