Question

Let the joint probability (mass) function of X and Y be given by the following: Values...

Let the joint probability (mass) function of X and Y be given by the following:
Values of X

1 2
1 1/3 1/6
Value of Y 2 1/6 1/3
(a) Find E(X + Y ). (b) Find E(min(X; Y )). (c) Find E(XY ).
(d) Find Cov(X; Y ) and Corr(X; Y ). Check both of them are positive.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Let (X; Y ) be a continuous random vector with joint probability density function fX;Y...
1. Let (X; Y ) be a continuous random vector with joint probability density function fX;Y (x, y) = k(x + y^2) if 0 < x < 1 and 0 < y < 1 0 otherwise. Find the following: I: The expectation of XY , E(XY ). J: The covariance of X and Y , Cov(X; Y ).
Suppose the joint probability distribution of X and Y is given by the following table. Y=>3...
Suppose the joint probability distribution of X and Y is given by the following table. Y=>3 6 9 X 1 0.2 0.2 0 2 0.2 0 0.2 3 0 0.1 0.1 The table entries represent the probabilities. Hence the outcome [X=1,Y=6] has probability 0.2. a) Compute E(X), E(X2), E(Y), and E(XY). (For all answers show your work.) b) Compute E[Y | X = 1], E[Y | X = 2], and E[Y | X = 3]. c) In this case, E[Y...
Let X and Y have a joint density function given by f(x; y) = 3x; 0...
Let X and Y have a joint density function given by f(x; y) = 3x; 0 <= y <= x <= 1 (a) Find P(X<2Y). (b) Find cov(X,Y). (c) Find P(X < 1/2 |Y = 1/3). (d) Find P(X = 1/2|Y = 1/3). (e) Find P(X > 1/2|Y > 1/3). (f) Find the conditional expectation E(X|Y = y).
2. The joint probability density function of X and Y is given by                               &nbsp
2. The joint probability density function of X and Y is given by                                                  f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1}
Suppose that the joint probability density function of the random variables X and Y is f(x,...
Suppose that the joint probability density function of the random variables X and Y is f(x, y) = 8 >< >: x + cy^2 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 0 otherwise. (a) Sketch the region of non-zero probability density and show that c = 3/ 2 . (b) Find P(X + Y < 1), P(X + Y = 1) and P(X + Y > 1). (c) Compute the marginal density function of X and Y...
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where...
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where x = 1, 2, 3; y = 1, 2, x + y ≤ 4 , that is, (x, y) are {(1, 1),(1, 2),(2, 1),(2, 2),(3, 1)} . (a) Find c > 0 . (b) Find μX (c) Find μY (d) Find σ^2 X (e) Find σ^2 Y (f) Find Cov (X, Y ) (g) Find ρ , Corr (X, Y ) (h) Are X...
a) The joint probability density function of the random variables X, Y is given as f(x,y)...
a) The joint probability density function of the random variables X, Y is given as f(x,y) = 8xy    if  0≤y≤x≤1 , and 0 elsewhere. Find the marginal probability density functions. b) Find the expected values EX and EY for the density function above c) find Cov  X,Y .
Problem 4 The joint probability density function of the random variables X, Y is given as...
Problem 4 The joint probability density function of the random variables X, Y is given as f(x,y)=8xy if 0 ≤ y ≤ x ≤ 1, and 0 elsewhere. Find the marginal probability density functions. Problem 5 Find the expected values E (X) and E (Y) for the density function given in Problem 4. Problem 7. Using information from problems 4 and 5, find Cov(X,Y).
Find the joint discrete random variable x and y,their joint probability mass function is given by...
Find the joint discrete random variable x and y,their joint probability mass function is given by Px,y(x,y)={k(x+y) x=-2,0,+2,y=-1,0,+1 0 Otherwise } 2.1 determine the value of constant k,such that this will be proper pmf? 2.2 find the marginal pmf’s,Px(x) and Py(y)? 2.3 obtain the expected values of random variables X and Y? 2.4 calculate the variances of X and Y?
2. 2. The joint probability density function of X and Y is given by                               &n
2. 2. The joint probability density function of X and Y is given by                                                  f(x,y) = (6/7)(x² + xy/2), 0 < x < 1, 0 < y < 2.     f(x,y) =0 otherwise a) Compute the marginal densities of X and Y. b) Are X and Y independent. c) Compute the   conditional density function f(y|x) and check restrictions on function you derived d) probability P{X+Y<1} [5+5+5+5 = 20]