You are given the following information about y and x:
y |
x |
|
Dependent Variable |
Independent Variable |
|
5 |
15 |
|
7 |
12 |
|
9 |
10 |
|
11 |
7 |
Using your answers from questions #8 and #9, calculate the value of SSE
Round your answer to three decimal places.
The output is:
r² | 0.994 | |||||
r | -0.997 | |||||
Std. Error | 0.243 | |||||
n | 4 | |||||
k | 1 | |||||
Dep. Var. | y | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 19.8824 | 1 | 19.8824 | 338.00 | .0029 | |
Residual | 0.118 | 2 | 0.0588 | |||
Total | 20.0000 | 3 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=2) | p-value | 95% lower | 95% upper |
Intercept | 16.4118 | |||||
x | -0.7647 | 0.0416 | -18.385 | .0029 | -0.9437 | -0.5857 |
SSE = 0.118.
Get Answers For Free
Most questions answered within 1 hours.