Question

Exercise 1. For any RV X and real numbers a,b ∈ R, show that E[aX +b]=aE[X]+b....

Exercise 1. For any RV X and real numbers a,b ∈ R, show that
E[aX +b]=aE[X]+b. (1)

Exercise2. LetX beaRV.ShowthatVar(X)=E[X2]−E[X]2.

Exercise 3 (Bernoulli RV). A RV X is a Bernoulli variable with (success) probability p ∈ [0,1] if it takes value 1 with probability p and 0 with probability 1−p. In this case we write X ∼ Bernoulli(p). ShowthatE(X)=p andVar(X)=p(1−p).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let n be a positive integer and p and r two real numbers in the interval...
Let n be a positive integer and p and r two real numbers in the interval (0,1). Two random variables X and Y are defined on a the same sample space. All we know about them is that X∼Geom(p) and Y∼Bin(n,r). (In particular, we do not know whether X and Y are independent.) For each expectation below, decide whether it can be calculated with this information, and if it can, give its value (in terms of p, n, and r)....
If a,b are elements of R(set of real numbers) and a<b, show that [a,b] is equivalent...
If a,b are elements of R(set of real numbers) and a<b, show that [a,b] is equivalent to [0,1].
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then...
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then the cubic equation x^3 + ax^2 + bx + c = 0 has precisely one real root
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|)...
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|) is also a bijection (i.e. g: (-d,d)->R) Finally consider h(x)= x + (a+b)/2 and show it is a bijection where h: (-d,d)->(a,b) Conclude: R~(a,b)
A Bernoulli trial is an experiment with the sample space S = {success, failure}. Let X...
A Bernoulli trial is an experiment with the sample space S = {success, failure}. Let X be the random variable on S defined by ? X(s) : 1 if s = success 0 if s = failure. Suppose the probability P ({success}) is equal to some value p ∈ (0, 1). (a) Tabulate for the rv X the probability distribution Px (X = x) in terms of p for x ∈ {0, 1}. (b) Give the expression for the cdf...
? is a Pareto rv with probability distribution function given by f(x) = bx −(b+1) ,...
? is a Pareto rv with probability distribution function given by f(x) = bx −(b+1) , x≥ 1 where b is a positive number between 0 and 1 Show that ? = ln(?) has exponential distribution, ? ∼ exp(?), and find the maximum likelihood estimator of b. Explain why the moment of method fails to work in this case.
Let P(R) denote the family of all polynomials (in a single variable x) with real coefficients....
Let P(R) denote the family of all polynomials (in a single variable x) with real coefficients. We have seen that with the operations of pointwise addition and multiplication by scalars, P(R) is a vector space over R. Consider the 2 linear maps D, I : P(R) to P(R), where D is differentiation and I is anti-differentiation. In detail, for a polynomial p = a0+a1x1+...+anxn, we have D(p) = a1+2a2x+....+nanxn-1 and I(p) = a0x+(a1/2)x2+...+(an/(n+1))xn+1. a. Show that D composed with I...
1) Prove that for all real numbers x and y, if x < y, then x...
1) Prove that for all real numbers x and y, if x < y, then x < (x+y)/2 < y 2) Let a, b ∈ R. Prove that: a) (Triangle inequality) |a + b| ≤ |a| + |b| (HINT: Use Exercise 2.1.12b and Proposition 2.1.12, or a proof by cases.)
Define a Q-sequence recursively as follows. B.   x, 4 − x is a Q-sequence for any...
Define a Q-sequence recursively as follows. B.   x, 4 − x is a Q-sequence for any real number x. R.   If x1, x2,   , xj and y1, y2,   , yk are Q-sequences, so is     x1 − 1, x2,   , xj, y1, y2,   , yk − 3. Use structural induction (i.e., induction on the recursive definition) to prove that the sum of the numbers in any Q-sequence is 4. Base Case: Any Q-sequence formed by the base case of the definition has sum x +...
A random variable X has a probability function f(x) = Ax, 0 ≤ x ≤ 1,...
A random variable X has a probability function f(x) = Ax, 0 ≤ x ≤ 1, 0, otherwise. a. What is the value of A? (Hint: intigral -inf to inf f(x)dx= 1.) b. Compute P(0less than x less than 1/3) c. Compute the cdf. of X. d. Compute E(X). e. Compute V(X).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT