Question

1. Show that if X is a Poisson random variable with parameter λ, then its variance...

1. Show that if X is a Poisson random variable with parameter λ, then its variance is λ

2.Show that if X is a Binomial random variable with parameters n and p, then the its variance is npq.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A Poisson random variable is a variable X that takes on the integer values 0 ,...
A Poisson random variable is a variable X that takes on the integer values 0 , 1 , 2 , … with a probability mass function given by p ( i ) = P { X = i } = e − λ λ i i ! for i = 0 , 1 , 2 … , where the parameter λ > 0 . A)Show that ∑ i p ( i ) = 1. B) Show that the Poisson random...
Write a proof to show that if X is a Binomial random variable with parameters n...
Write a proof to show that if X is a Binomial random variable with parameters n and p, then its variance is npq.
Let X be a Poisson random variable with parameter λ and Y an independent Bernoulli random...
Let X be a Poisson random variable with parameter λ and Y an independent Bernoulli random variable with parameter p. Find the probability mass function of X + Y .
Let X be a Poisson random variable with parameter λ > 0. Determine a value of...
Let X be a Poisson random variable with parameter λ > 0. Determine a value of λk that maximizes P(X = k) for k ≥ 1.
Let X and Y be independent random variables following Poisson distributions, each with parameter λ =...
Let X and Y be independent random variables following Poisson distributions, each with parameter λ = 1. Show that the distribution of Z = X + Y is Poisson with parameter λ = 2. using convolution formula
Suppose that X|λ is an exponential random variable with parameter λ and that λ|p is geometric...
Suppose that X|λ is an exponential random variable with parameter λ and that λ|p is geometric with parameter p. Further suppose that p is uniform between zero and one. Determine the pdf for the random variable X and compute E(X).
5.2.12. Let the random variable Zn have a Poisson distribution with parameter μ = n. Show...
5.2.12. Let the random variable Zn have a Poisson distribution with parameter μ = n. Show that the limiting distribution of the random variable Yn =(Zn−n)/√n is normal with mean zero and variance 1. (Hint: by using the CLT, first show Zn is the sum of a random sample of size n from a Poisson random variable with mean 1.)
Let X be an exponential random variable with parameter λ > 0. Find the probabilities P(...
Let X be an exponential random variable with parameter λ > 0. Find the probabilities P( X > 2/ λ ) and P(| X − 1 /λ | < 2/ λ) .
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. Using the joint pdf function of X and Y, set up the summation /integration (whichever is relevant) that gives the expected value for X, and COMPUTE its value.
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and...
Let X denote a random variable that follows a binomial distribution with parameters n=5, p=0.3, and Y denote a random variable that has a Poisson distribution with parameter λ = 6. Additionally, assume that X and Y are independent random variables. Using the joint pdf function of X and Y, set up the summation /integration (whichever is relevant) that gives the expected value for X, and COMPUTE its value.