Question

Suppose we estimate the regression Yt = β1 + β2X2t + β3X3t + ut using 40...

Suppose we estimate the regression Yt = β1 + β2X2t + β3X3t + ut using 40 months of data. Using the residuals from this regression, we run another regression of  on the X2, X3, their squares and cross-products . From this regression we get a coefficient of determination R2 of 0.31. Let H0 be that there is no heteroscedasticity. What can you conclude?

  • A.

    We cannot conclude that there is heteroscedasticity at a level of significance of 5%.

  • B.

    Unable to reject the null hypothesis of no heteroscedasticity at a level of significance of 1%.

  • C.

    Reject the null hypothesis of no heteroscedasticity at a level of significance of 1%.

  • D.

    We conclude that there is heteroscedasticity at a level of significance of 5%.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ =...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,550 and SSE = 530. (a) At α = 0.05, test whether x1  is significant.State the null and alternative hypotheses. H0: β1 ≠ 0 Ha: β1 = 0 H0: β0 ≠ 0 Ha: β0 = 0    H0: β0 = 0 Ha: β0 ≠ 0 H0: β1 = 0 Ha: β1 ≠ 0 Find the value...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ =...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,600 and SSE = 550. (a) At α = 0.05, test whether x1is significant.State the null and alternative hypotheses. H0: β0 = 0 Ha: β0 ≠ 0 H0: β0 ≠ 0 Ha: β0 = 0    H0: β1 ≠ 0 Ha: β1 = 0 H0: β1 = 0 Ha: β1 ≠ 0 Find the value...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ =...
In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,600 and SSE = 550. (a) At α = 0.05, test whether x1 is significant. State the null and alternative hypotheses. H0: β0 = 0 Ha: β0 ≠ 0H0: β0 ≠ 0 Ha: β0 = 0    H0: β1 ≠ 0 Ha: β1 = 0H0: β1 = 0 Ha: β1 ≠ 0 Find the value of...
You may need to use the appropriate technology to answer this question. In a regression analysis...
You may need to use the appropriate technology to answer this question. In a regression analysis involving 27 observations, the following estimated regression equation was developed. ŷ = 25.2 + 5.5x1 For this estimated regression equation SST = 1,550 and SSE = 590. (a) At α = 0.05, test whether x1 is significant. State the null and alternative hypotheses. H0: β0 ≠ 0 Ha: β0 = 0 H0: β1 = 0 Ha: β1 ≠ 0    H0: β0 = 0 Ha:...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ =...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ = 17.6 + 3.8x1 − 2.3x2 + 7.6x3 + 2.7x4 For this estimated regression equation, SST = 1,835 and SSR = 1,800. (a)At α = 0.05, test the significance of the relationship among the variables.State the null and alternative hypotheses. -H0: One or more of the parameters is not equal to zero. Ha: β0 = β1 = β2 = β3 = β4 = 0 -H0:...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ =...
In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ = 17.6 + 3.8x1 − 2.3x2 + 7.6x3 + 2.7x4 For this estimated regression equation, SST = 1,815 and SSR = 1,780. (a) At α = 0.05, test the significance of the relationship among the variables. State the null and alternative hypotheses. H0: β0 = β1 = β2 = β3 = β4 = 0 Ha: One or more of the parameters is not equal to...
You may need to use the appropriate technology to answer this question. In a regression analysis...
You may need to use the appropriate technology to answer this question. In a regression analysis involving 30 observations, the following estimated regression equation was obtained. ŷ = 17.6 + 3.8x1 − 2.3x2 + 7.6x3 + 2.7x4 For this estimated regression equation, SST = 1,835 and SSR = 1,790. (a) At α = 0.05, test the significance of the relationship among the variables. State the null and alternative hypotheses. H0: One or more of the parameters is not equal to...
Use the following linear regression equation to answer the questions. x1 = 1.1 + 3.0x2 –...
Use the following linear regression equation to answer the questions. x1 = 1.1 + 3.0x2 – 8.4x3 + 2.3x4 (a) Which variable is the response variable? x3 x1      x2 x4 Which variables are the explanatory variables? (Select all that apply.) x1 x2 x3 x4 (b) Which number is the constant term? List the coefficients with their corresponding explanatory variables. constant = x2 coefficient= x3 coefficient= x4 coefficient= (c) If x2 = 4, x3 = 10, and x4 = 6, what...
Refer to the following regression output: Predictor Coef SE Coef Constant    30.00 13.70 X1    -7.00 3.60...
Refer to the following regression output: Predictor Coef SE Coef Constant    30.00 13.70 X1    -7.00 3.60 X2 3.00 9.30 X3 -19.00 10.80 Source DF SS MS F   Regression 3.00 8,200.00   Error 25.00     Total 28.00 10,000.00 a. What is the regression equation? (Round the final answers to the nearest whole number. Negative answer should be indicated by a minus sign.) Y′ =  +   X1 +  X2 +  X3 b. If X1 = 4, X2 = 6, and X3 = 8, what is the value of...
Q1. Suppose we wish to test the null hypothesis that a coefficient is equal to zero...
Q1. Suppose we wish to test the null hypothesis that a coefficient is equal to zero vs. the alternative that it is not zero at the 5 % level. If the 95% confidence interval for the coefficient does not contain zero, then we will reject the null hypothesis. Explain. Q2. Suppose we perform an F test and reject the null hypothesis and all the coefficients except the constant are zero. Does this imply the regression is a good fit for...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT