Question

The output voltage for an electric circuit is specified to be 134 volts. A sample of...

The output voltage for an electric circuit is specified to be 134 volts. A sample of 40 independent readings on the voltage for this circuit gave a sample mean 132.1 volts and standard deviation 2.2 volts. Test the hypothesis that the average output voltage is 134 volts against the alternative that it is less than 134 volts. Use a test with level 0.05.

State the null and alternative hypotheses.

H0: μ = 134
Ha: μ ≠ 134

H0: μ = 132.1
Ha: μ < 132.1    

H0: μ = 132.1
Ha: μ ≠ 132.1

H0: μ = 134
Ha: μ < 134

H0: μ = 132.1
Ha: μ > 132.1

State the rejection region. (Round your answers to two decimal places. If the test is one-tailed, enter NONE for the unused region.)

z > ____

z < ____

Calculate the appropriate test statistic. (Round your answer to two decimal places.)

z = ____

What is the conclusion of your test?

Reject H0. There is not enough evidence to conclude the mean output voltage for this electrical circuit is less than the desired voltage.

Fail to reject H0. There is not enough evidence to conclude the mean output voltage for this electrical circuit is less than the desired voltage.    

Fail to reject H0. There is enough evidence to conclude the mean output voltage for this electrical circuit is less than the desired voltage.

Reject H0. There is enough evidence to conclude the mean output voltage for this electrical circuit is less than the desired voltage.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
According to the manufacturer, the normal output voltage for a particular device is 120 volts. From...
According to the manufacturer, the normal output voltage for a particular device is 120 volts. From a sample of 40 devices, the mean was found to be 123.59 volts and the standard deviation was 0.31 volt. The test statistic was then found to be 73.242. Use the test statistic and a 0.05 significance level to test the claim that the sample is from a population with a mean equal to 120 volts. State the initial and final conclusion A: Reject...
Shear strength measurements derived from unconfined compression tests for two types of soil gave the results...
Shear strength measurements derived from unconfined compression tests for two types of soil gave the results shown in the following table (measurements in tons per square foot). Soil Type I Soil Type II n1 = 30 n2 = 35 y1 = 1.69 y2 = 1.46 s1 = 0.24 s2 = 0.22 Do the soils appear to differ with respect to average shear strength, at the 1% significance level? State the null and alternative hypotheses. H0: μ1 = μ2 Ha: μ1...
A manufacturer is interested in the output voltage of a power supply used in a PC....
A manufacturer is interested in the output voltage of a power supply used in a PC. Output voltage is assumed to be normally distributed, with standard deviation 0.78 volt, and the manufacturer wishes to test H0:μ=5 volts against H1:μ≠5 volts, using n=7 units. Round your answers to four decimal places (e.g. 98.7654). (a) The acceptance region is 4.81≤x¯≤5.14 . Find the value of α . (b) Find the power of the test for detecting a true mean output voltage of...
You may need to use the appropriate appendix table or technology to answer this question. Individuals...
You may need to use the appropriate appendix table or technology to answer this question. Individuals filing federal income tax returns prior to March 31 received an average refund of $1,052. Consider the population of "last-minute" filers who mail their tax return during the last five days of the income tax period (typically April 10 to April 15). (a) A researcher suggests that a reason individuals wait until the last five days is that on average these individuals receive lower...
Consider the following hypothesis test. H0: μ ≥ 20 Ha: μ < 20 A sample of...
Consider the following hypothesis test. H0: μ ≥ 20 Ha: μ < 20 A sample of 50 provided a sample mean of 19.3. The population standard deviation is 2. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) p-value = (c) Using α = 0.05, state your conclusion. Reject H0. There is sufficient evidence to conclude that μ < 20.Reject H0. There is...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of...
Consider the following hypothesis test. H0: μ ≤ 25 Ha: μ > 25 A sample of 40 provided a sample mean of 26.2. The population standard deviation is 6. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b)Find the p-value. (Round your answer to four decimal places.) (c)At α = 0.01, state your conclusion. Reject H0. There is sufficient evidence to conclude that μ > 25. Reject H0. There is insufficient evidence to...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of...
Consider the following hypothesis test. H0: μ = 15 Ha: μ ≠ 15 A sample of 50 provided a sample mean of 14.07. The population standard deviation is 3. (a) Find the value of the test statistic. (Round your answer to two decimal places.) (b) Find the p-value. (Round your answer to four decimal places.) p-value = (c) At α = 0.05, state your conclusion. Reject H0. There is sufficient evidence to conclude that μ ≠ 15.Reject H0. There is...
Industrial wastes and sewage dumped into our rivers and streams absorb oxygen and thereby reduce the...
Industrial wastes and sewage dumped into our rivers and streams absorb oxygen and thereby reduce the amount of dissolved oxygen available for fish and other forms of aquatic life. One state agency requires a minimum of 5 parts per million (ppm) of dissolved oxygen in order for the oxygen content to be sufficient to support aquatic life. Six water specimens taken from a river at a specific location during the low-water season (July) gave readings of 4.9, 5.0, 5.0, 5.1,...
A manufacturer is interested in the output voltage of a power supply used is a PC....
A manufacturer is interested in the output voltage of a power supply used is a PC. Output voltage is assumed to be normally distributed with standard deviation 0.25 Volts, and the manufacturer wishes to test H0: μ = 5 Volts against Ha: μ≠ 5 Volts, using n = 8 units at 5% significance level. If the sample mean is 5.10, then the corresponding p-value is 0.295 0.258 0.05 1.13 ) In testing the hypotheses H0: μ = 200 vs. Ha:...
A simple random sample of 48 adults is obtained from a normally distributed​ population, and each​...
A simple random sample of 48 adults is obtained from a normally distributed​ population, and each​ person's red blood cell count​ (in cells per​ microliter) is measured. The sample mean is 5.19 and the sample standard deviation is 0.53. Use a 0.01 significance level and the given calculator display to test the claim that the sample is from a population with a mean less than 5.4, which is a value often used for the upper limit of the range of...