Question

You wish to test the following claim (H1H1) at a significance level of α=0.001α=0.001.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1>μ2H1:μ1>μ2...

You wish to test the following claim (H1H1) at a significance level of α=0.001α=0.001.

      Ho:μ1=μ2Ho:μ1=μ2
      H1:μ1>μ2H1:μ1>μ2

You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=24n1=24 with a mean of M1=68.9M1=68.9 and a standard deviation of SD1=8.6SD1=8.6 from the first population. You obtain a sample of size n2=24n2=24 with a mean of M2=63.5M2=63.5 and a standard deviation of SD2=14.1SD2=14.1 from the second population.

What is the test statistic for this sample? (Report answer accurate to three decimal places.)
test statistic =

What is the p-value for this sample? (Report answer accurate to four decimal places.)
p-value =

The p-value is...

  • less than (or equal to) αα
  • greater than αα

This test statistic leads to a decision to...

  • reject the null
  • accept the null
  • fail to reject the null

As such, the final conclusion is that...

  • There is sufficient evidence to warrant rejection of the claim that the first population mean is greater than the second population mean.
  • There is not sufficient evidence to warrant rejection of the claim that the first population mean is greater than the second population mean.
  • The sample data support the claim that the first population mean is greater than the second population mean.
  • There is not sufficient sample evidence to support the claim that the first population mean is greater than the second population mean.

Homework Answers

Answer #1

test statistic :

test statistic =1.602

P value :

with t = 1.602 , df = 46, we get p-value =0.058,

P value = 0.0580

The p-value is  greater than α

conclusion :

There is not sufficient evidence to warrant rejection of the claim that the first population mean is greater than the second population mean.

fail to reject the null

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You wish to test the following claim (H1H1) at a significance level of α=0.005α=0.005.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1>μ2H1:μ1>μ2...
You wish to test the following claim (H1H1) at a significance level of α=0.005α=0.005.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1>μ2H1:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain the following two samples of data. Sample #1 Sample #2 72.7 81 78.1 97.9 82.4 79.9 85.8 79.6 103.6 65.1 69.1 57.2 60.5 64.6 75.2 113.9 67.1 97.2...
You wish to test the following claim (H1H1) at a significance level of α=0.002α=0.002.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1<μ2H1:μ1<μ2...
You wish to test the following claim (H1H1) at a significance level of α=0.002α=0.002.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1<μ2H1:μ1<μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=14n1=14 with a mean of M1=71.4M1=71.4 and a standard deviation of SD1=7.5SD1=7.5 from the first population. You obtain a sample of size n2=12n2=12 with...
You wish to test the following claim (HaHa) at a significance level of α=0.001α=0.001. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.001α=0.001. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=27n1=27 with a mean of ¯x1=86.9x¯1=86.9 and a standard deviation of s1=11.7s1=11.7 from the first population. You obtain a sample of size n2=14n2=14 with a mean...
You wish to test the following claim (H1) at a significance level of α=0.01       Ho:μ1=μ2       H1:μ1>μ2...
You wish to test the following claim (H1) at a significance level of α=0.01       Ho:μ1=μ2       H1:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. However, you also have no reason to believe the variances of the two populations are not equal. You obtain a sample of size n1=20 with a mean of M1=84.6 and a standard deviation of SD1=18.1 from the first population. You obtain a sample of size n2=21 with...
You wish to test the following claim (H1H1) at a significance level of α=0.005α=0.005.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1≠μ2H1:μ1≠μ2...
You wish to test the following claim (H1H1) at a significance level of α=0.005α=0.005.       Ho:μ1=μ2Ho:μ1=μ2       H1:μ1≠μ2H1:μ1≠μ2 You obtain a sample of size n1=83n1=83 with a mean of M1=74.6M1=74.6 and a standard deviation of SD1=10.4SD1=10.4 from the first population. You obtain a sample of size n2=75n2=75 with a mean of M2=72.3M2=72.3 and a standard deviation of SD2=9.1SD2=9.1 from the second population. What is the critical value for this test? (Report answer accurate to three decimal places.) critical value = ±± What...
You wish to test the following claim (HaHa) at a significance level of α=0.001 Ho:μ1=μ2 Ha:μ1≠μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.001 Ho:μ1=μ2 Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=13 with a mean of ¯x1=69.1 and a standard deviation of s1=15.5 from the first population. You obtain a sample of size n2=22 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.01α=0.01. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.01α=0.01. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1>μ2Ha:μ1>μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=26n1=26 with a mean of ¯x1=74.8x¯1=74.8 and a standard deviation of s1=8.3s1=8.3 from the first population. You obtain a sample of size n2=13n2=13 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.01 Ho:μ1=μ2 Ha:μ1<μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.01 Ho:μ1=μ2 Ha:μ1<μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=22 with a mean of ¯x1=65.6 and a standard deviation of s1=6.2 from the first population. You obtain a sample of size n2=20 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.002 Ho:μ1=μ2 Ha:μ1≠μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.002 Ho:μ1=μ2 Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=16 with a mean of ¯x1=88.7x and a standard deviation of s1=15.9 from the first population. You obtain a sample of size n2=20 with a mean...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1≠μ2Ha:μ1≠μ2...
You wish to test the following claim (HaHa) at a significance level of α=0.05α=0.05. Ho:μ1=μ2Ho:μ1=μ2 Ha:μ1≠μ2Ha:μ1≠μ2 You believe both populations are normally distributed, but you do not know the standard deviations for either. And you have no reason to believe the variances of the two populations are equal You obtain a sample of size n1=16n1=16 with a mean of ¯x1=62.4x¯1=62.4 and a standard deviation of s1=15.3s1=15.3 from the first population. You obtain a sample of size n2=25n2=25 with a mean...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT