Question

. Suppose the parent population has an exponential distribution (like the density curve of the age...

. Suppose the parent population has an exponential distribution (like the density curve of the

age of pennies) with a mean of 15 and standard deviation of 12. Use the Central Limit Theorem

to inform you, then draw the sampling distribution of ?̅ when n=30.

PLEASE DRAW THE SAMPLING DISTRIBUTION of ?̅ when n=30.

Homework Answers

Answer #1

Solution :

Given that ,

mean = = 15

standard deviation = = 12

n = 30

mean of sampling distribution of ?̅

= = 15

standard deviation of sampling distribution of ?̅

=  / n= 12/ 30=2.19

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question Central Limit Theorem a)According to the Central Limit Theorem, what are the mean and standard...
Question Central Limit Theorem a)According to the Central Limit Theorem, what are the mean and standard deviation of the sampling distribution of sample means? b)A population has a mean ?=1800 and a standard deviation ?=40. Find the mean and standard deviation of the sampling distribution of sample means when the sample size n=100.
Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the...
Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the sample size n≥30. A random sample of size n=30 is obtained. What are the mean, the variance, and the standard deviation of the sampling distribution for the sample mean? Describe the probability distribution of the sample mean and draw the graph of this probability distribution with its mean and standard deviation. What is the probability that x<101.5? What is the probability that x>102? What...
Suppose the lifetime of incandescent light bulbs has a mean of 1691.805 hours and a standard...
Suppose the lifetime of incandescent light bulbs has a mean of 1691.805 hours and a standard deviation of 79.1675 days. According to the Central Limit Theorem, what happens to the histogram of averages as n increases? Question 6 options: 1) The histogram will begin to look less like the normal curve. 2) The histogram will begin to look more like the normal curve. 3) Increasing n will not affect the histogram of averages. 4) It depends on the mean and...
Suppose lengths of text messages have an unknown distribution with mean 30 and standard deviation 4...
Suppose lengths of text messages have an unknown distribution with mean 30 and standard deviation 4 characters. A sample of size n=61 is randomly taken from the population and the sum of the values is taken. Using the Central Limit Theorem for Sums, what is the standard deviation for the sample sum distribution?
1. A population has a mean of 200 and a standard deviation of 50. A simple...
1. A population has a mean of 200 and a standard deviation of 50. A simple random sample of size 100 will be taken and the sample mean will be used to estimate the population mean. a. What is the expected value of the sample mean? b. What is the standard deviation of the sample mean? c. Confirm whether the Central Limit Theorem is met and explain it’s significance. d. Draw the sampling distribution of the sample mean. e. What...
The population has mean μ=29 and standard deviation σ=9. This distribution is shown with the black...
The population has mean μ=29 and standard deviation σ=9. This distribution is shown with the black dotted line. We are asked for the mean and standard deviation of the sampling distribution for a sample of size 34. The Central Limit Theorem states that the sample mean of a sample of size n is normally distributed with mean μx¯=μ and σx¯=σn√. In our case, we have μ=29, σ=9, and n=34. So, μx¯=29 and σx¯=934‾‾‾√=1.5 This distribution is shown with the red...
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central...
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central Limit Theorem applies to non-normal population distributions. 2. The standard deviation of the sampling distribution will be equal to the population standard deviation. 3. The sampling distribution will be approximately normal when the sample size is sufficiently large. 4. The mean of the sampling distribution will be equal to the population mean.
Hello, please review the statement below and determine if the statement is right or not (and...
Hello, please review the statement below and determine if the statement is right or not (and why). Explain the central limit theorem The central limit theorem states that when there’s a large enough sample size (generally 30 or more) with a finite level of variance, then the mean from all of the samples, from the same population, will be approximately equal to the mean of the population. There are three different components of the theorem. The first is successive sampling...
Suppose we repeatedly take samples of size 100 from the population distribution, calculate a sample mean...
Suppose we repeatedly take samples of size 100 from the population distribution, calculate a sample mean each time, and plot those sample means in a histogram. The histogram we created would be an example of a (variable, population, distribution, sampling distribution???) . According to the central limit theorem, the histogram would have a shape that is approximately (left skewed, right skewed or normal???) , with mean  (give a number???) and standard deviation  (give a number??). The standard deviation of the statistic under...
A population of values has a distribution with 37.9 and standard deviation of 94.1 . You...
A population of values has a distribution with 37.9 and standard deviation of 94.1 . You intend to draw a random sample of size 79. According to the Central Limit Theorem: (a) What is the mean of the distribution of sample means? ( b) What is the standard deviation of the distribution of sample means? (Report answer accurate to 2 decimal places.) c) In a random sample of n=79, what is the probability that its random sample mean is more...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT