The weights of adult gray tree frogs are known to be normally distributed with a population standard deviation of 0.12 ounces. 34 mature gray tree frogs were weighed. The mean weight of the sample was ?̅= 0.25 oz. Compute the margin of error (E) to construct a 95% confidence interval for the population mean for a sample of size 34. Round, if necessary, to two (2) decimal places. E =
= Solution :
Given that,
Point estimate = sample mean =
= 0.25
Population standard deviation =
= 0.12
Sample size n =34
At 95% confidence level the z is ,
= 1 - 95% = 1 - 0.95 = 0.05
/ 2 = 0.05 / 2 = 0.025
Z/2 = Z0.025 = 1.96 ( Using z table )
Margin of error = E = Z/2
* (
/n)
= 1.96 * ( 0.12 / 34
)
E= 0.04
Get Answers For Free
Most questions answered within 1 hours.