Question

Given the following hypotheses: H0: μ ≤ 11 H1: μ > 11 A random sample of...

Given the following hypotheses: H0: μ ≤ 11 H1: μ > 11 A random sample of 10 observations is selected from a normal population. The sample mean was 12 and the sample standard deviation 5.0. Using the 0.025 significance level:

a. State the decision rule. (Round your answer to 3 decimal places.)

Homework Answers

Answer #1

n = 10

sample mean = 12

sample sd = 5

Assuming that the data is normally distributed and also as the sample size is less than 30 we will use t stat.

Decision rule:

df = 9

level of significance = 0.025

right tailed test

t critical = 2.262

If the t stat is greater than t critical (2.262) , we will reject the Null hypothesis.

IF the t stat is less than t critical (2.262), we fail to reject the NUll hypothesis.

Here, t stat (0.632) is less than t critical (2.262) hence we fail to reject the Null hypothesis.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the following hypotheses: H0: μ = 450 H1: μ ≠ 450 A random sample of...
Given the following hypotheses: H0: μ = 450 H1: μ ≠ 450 A random sample of 11 observations is selected from a normal population. The sample mean was 456 and the sample standard deviation 5. Using the 0.10 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) Please explain and give full answers
Given the following hypotheses: H0: μ = 450 H1: μ ≠ 450 A random sample of...
Given the following hypotheses: H0: μ = 450 H1: μ ≠ 450 A random sample of 11 observations is selected from a normal population. The sample mean was 456 and the sample standard deviation 5. Using the 0.10 significance level: 1. State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.)\ Reject H0 when the test statistic is _______inside or outside____, and interval is _____, ______ 2. Compute the value...
Given the following hypotheses: H0: μ =590 H1: μ ≠ 590 A random sample of 15...
Given the following hypotheses: H0: μ =590 H1: μ ≠ 590 A random sample of 15 observations is selected from a normal population. The sample mean was 595 and the sample standard deviation 8. Using the 0.05 significance level: A.) State the decision rule. (round answer to 3 decimal places) Reject H0 when the test statistic is____ the interval (____,_____) B.) Compute the value of the test statistic. (round to 3 decimal places) C.) what is your decision regarding the...
Given the following hypotheses: H0: μ = 470 H1: μ ≠ 470 A random sample of...
Given the following hypotheses: H0: μ = 470 H1: μ ≠ 470 A random sample of 13 observations is selected from a normal population. The sample mean was 475 and the sample standard deviation 9. Using the 0.05 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) Compute the value of the test statistic. (Round your answer to 3 decimal places.) What is your decision regarding the...
Given the following hypotheses: H0: μ ≤ 13 H1: μ > 13 A random sample of...
Given the following hypotheses: H0: μ ≤ 13 H1: μ > 13 A random sample of 10 observations is selected from a normal population. The sample mean was 14 and the sample standard deviation 4.2. Using the 0.05 significance level: 1. State the decision rule. (Round your answer to 3 decimal places.) 2. Compute the value of the test statistic. (Negative answers should be indicated by a minus sign. Round your answer to 3 decimal places.)
Given the following hypotheses: H0: μ = 420 H1: μ ≠ 420 A random sample of...
Given the following hypotheses: H0: μ = 420 H1: μ ≠ 420 A random sample of 8 observations is selected from a normal population. The sample mean was 425 and the sample standard deviation 9. Using the 0.10 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) Compute the value of the test statistic. (Round your answer to 3 decimal places.) What is your decision regarding the...
Given the following hypotheses: H0: μ = 600 H1: μ ≠ 600 A random sample of...
Given the following hypotheses: H0: μ = 600 H1: μ ≠ 600 A random sample of 16 observations is selected from a normal population. The sample mean was 609 and the sample standard deviation 6. Using the 0.10 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) Reject H0 when the test statistic is (inside/ outside) the interval ______, ________ Compute the value of the test statistic....
Given the following hypothesis:      H0 : μ ≤ 13 H1 : μ > 13 For...
Given the following hypothesis:      H0 : μ ≤ 13 H1 : μ > 13 For a random sample of 10 observations, the sample mean was 17 and the sample standard deviation 3.20. Using the 0.100 significance level: (a) State the decision rule. (Round your answer to 3 decimal places.)   Reject H0 if t >    (b) Compute the value of the test statistic. (Negative value should be indicated by a minus sign. Round your answer to 3 decimal places.)...
The following hypotheses are given: H0 : σ1² − σ2² ≤ 0 H1 : σ1² −...
The following hypotheses are given: H0 : σ1² − σ2² ≤ 0 H1 : σ1² − σ2² > 0 A random sample of nineteen observations from the first population resulted in a standard deviation of 33. A random sample of thirty three observations from the second population showed a standard deviation of 28. At the 0.05 significance level, is there more variation in the first population? a. State the decision rule. (Round the final answer to 2 decimal places.) Reject...
The null and alternate hypotheses are: H0: μ1 ≤ μ2 H1: μ1 > μ2 A random...
The null and alternate hypotheses are: H0: μ1 ≤ μ2 H1: μ1 > μ2 A random sample of 23 items from the first population showed a mean of 107 and a standard deviation of 12. A sample of 15 items for the second population showed a mean of 102 and a standard deviation of 5. Use the 0.025 significant level. Find the degrees of freedom for unequal variance test. (Round down your answer to the nearest whole number.) State the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT