Question

Given the following hypothesis:     H0 : μ = 125     H1 : μ ≠ 125...

Given the following hypothesis:

   

H0 : μ = 125

   

H1 : μ ≠ 125

   

A random sample of six resulted in the following values 132, 132, 130, 143, 140, and 130.

   

Using the 0.05 significance level, can we conclude the mean is different from 125?

   

(a) What is the decision rule? (Negative amounts should be indicated by a minus sign. Round your answers to 3 decimal places.)

   

Reject H0 : μ = 125 and fail to reject H1 : μ ≠ 125 when the test statistic is (Click to select)inside the intervaloutside the interval ( ,   ).

  

(b) The value of the test statistic is (Round your answer to 3 decimal places.)
   

       

(c) What is your decision regarding H0 ?
  
(Click to select)Fail to rejectReject

       

(d) Estimate the p-value.
(Click to select)Between 0.01 and 0.05Less than 0.01Greater than 0.1Between 0.05 and 0.2

Homework Answers

Answer #1

Part a

Here, we have to use one sample t test for the population mean.

The null and alternative hypotheses are given as below:

H0: µ = 125 versus Ha: µ ≠ 125

This is a two tailed test.

The test statistic formula is given as below:

t = (Xbar - µ)/[S/sqrt(n)]

From given data, we have

µ = 125

Xbar = 134.5

S = 5.576737397

n = 6

df = n – 1 = 5

α = 0.05

Critical value = - 2.5706 and 2.5706

(by using t-table or excel)

Reject H0 : μ = 125 and fail to reject H1 : μ ≠ 125 when the test statistic is outside the interval (-2.571, 2.571).

Part b

t = (Xbar - µ)/[S/sqrt(n)]

t = (134.5 – 125)/[ 5.576737397/sqrt(6)]

t = 4.1727

Value of the test statistic = 4.173

Part c

Value of the test statistic is outside the above critical values, so we reject H0.

Part d

P-value = 0.0087

(by using t-table)

(Less than 0.01)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the following hypothesis:      H0 : μ ≤ 13 H1 : μ > 13 For...
Given the following hypothesis:      H0 : μ ≤ 13 H1 : μ > 13 For a random sample of 10 observations, the sample mean was 17 and the sample standard deviation 3.20. Using the 0.100 significance level: (a) State the decision rule. (Round your answer to 3 decimal places.)   Reject H0 if t >    (b) Compute the value of the test statistic. (Negative value should be indicated by a minus sign. Round your answer to 3 decimal places.)...
The following hypotheses are given. H0: p ≤ 0.45 H1: p > 0.45 A sample of...
The following hypotheses are given. H0: p ≤ 0.45 H1: p > 0.45 A sample of 140 observations revealed that   = 0.35. At the 0.10 significance level, can the null hypothesis be rejected? a. State the decision rule. (Round the final answer to 3 decimal places.) (Click to select)  Reject  Not reject  H0 and  (Click to select)  and accept  and reject  H1 if z >  or z <  . b. Compute the value of the test statistic. (Round the final answer to 2 decimal places.) Value of the test...
Given the following hypotheses: H0: μ = 600 H1: μ ≠ 600 A random sample of...
Given the following hypotheses: H0: μ = 600 H1: μ ≠ 600 A random sample of 16 observations is selected from a normal population. The sample mean was 609 and the sample standard deviation 6. Using the 0.10 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) Reject H0 when the test statistic is (inside/ outside) the interval ______, ________ Compute the value of the test statistic....
Given the following hypotheses: H0: μ = 100 H1: μ ≠ 100 A random sample of...
Given the following hypotheses: H0: μ = 100 H1: μ ≠ 100 A random sample of six resulted in the following values: 118 105 112 119 105 111 Using the 0.05 significance level, can we conclude that the mean is different from 100? a. What is the decision rule? (Negative answer should be indicated by a minus sign. Round the final answers to 3 decimal places.) Reject H0: μ = 100 and accept H1: μ ≠ 100 when the test...
Given the following hypotheses: H0: μ =590 H1: μ ≠ 590 A random sample of 15...
Given the following hypotheses: H0: μ =590 H1: μ ≠ 590 A random sample of 15 observations is selected from a normal population. The sample mean was 595 and the sample standard deviation 8. Using the 0.05 significance level: A.) State the decision rule. (round answer to 3 decimal places) Reject H0 when the test statistic is____ the interval (____,_____) B.) Compute the value of the test statistic. (round to 3 decimal places) C.) what is your decision regarding the...
The following hypotheses are given: H0 : σ1² − σ2² ≤ 0 H1 : σ1² −...
The following hypotheses are given: H0 : σ1² − σ2² ≤ 0 H1 : σ1² − σ2² > 0 A random sample of eight observations from the first population resulted in a standard deviation of 40. A random sample of forty eight observations from the second population showed a standard deviation of 43. At the 0.10 significance level, is there more variation in the first population? a. State the decision rule. (Round the final answer to 2 decimal places.) Reject...
The following hypotheses are given. H0 : π ≤ 0.83 H1 : π > 0.83 A...
The following hypotheses are given. H0 : π ≤ 0.83 H1 : π > 0.83 A sample of 140 observations revealed that p = 0.88. At the 0.05 significance level, can the null hypothesis be rejected? State the decision rule. (Round your answer to 2 decimal places.) Compute the value of the test statistic. (Round your answer to 2 decimal places.) What is your decision regarding the null hypothesis? Do not reject H0. Reject H0.
Given the following hypotheses: H0: μ = 450 H1: μ ≠ 450 A random sample of...
Given the following hypotheses: H0: μ = 450 H1: μ ≠ 450 A random sample of 11 observations is selected from a normal population. The sample mean was 456 and the sample standard deviation 5. Using the 0.10 significance level: 1. State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.)\ Reject H0 when the test statistic is _______inside or outside____, and interval is _____, ______ 2. Compute the value...
Given the following hypotheses: H0: μ = 420 H1: μ ≠ 420 A random sample of...
Given the following hypotheses: H0: μ = 420 H1: μ ≠ 420 A random sample of 8 observations is selected from a normal population. The sample mean was 425 and the sample standard deviation 9. Using the 0.10 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) Compute the value of the test statistic. (Round your answer to 3 decimal places.) What is your decision regarding the...
Given the following hypotheses: H0: μ = 470 H1: μ ≠ 470 A random sample of...
Given the following hypotheses: H0: μ = 470 H1: μ ≠ 470 A random sample of 13 observations is selected from a normal population. The sample mean was 475 and the sample standard deviation 9. Using the 0.05 significance level: State the decision rule. (Negative amount should be indicated by a minus sign. Round your answers to 3 decimal places.) Compute the value of the test statistic. (Round your answer to 3 decimal places.) What is your decision regarding the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT