Question

Let X1, X2, . . . , Xn be a random sample from a population following...

Let X1, X2, . . . , Xn be a random sample from a population following a uniform(0,2θ)

(a) Show that if n is large, the distribution of Z =( X − θ) / ( θ/√ 3n) is approximately N(0, 1).

(b) We can estimate θ by X(sample mean) and define W = (X − θ ) / (X/√ 3n) which is also approximately N(0, 1) for large n. Derive a (1 − α)100% confidence interval for θ based on W.

(c) Find a (1 − α)100% confidence interval for θ directly from Z defined in (a).

(d) Using the result in (b), find a (1 − α)100% confidence interval for the variance of X which follows a uniform(0,2θ) distribution.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x;...
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x; θ) = (θ + 1)x^ −θ−2 , x > 1, θ > 0. Find the maximum likelihood estimator of θ based on a random sample of size n above
Let X1, X2 · · · , Xn be a random sample from the distribution with...
Let X1, X2 · · · , Xn be a random sample from the distribution with PDF, f(x) = (θ + 1)x^θ , 0 < x < 1, θ > −1. Find an estimator for θ using the maximum likelihood
1. Let X1, X2, . . . , Xn be a random sample from a distribution...
1. Let X1, X2, . . . , Xn be a random sample from a distribution with pdf f(x, θ) = 1 3θ 4 x 3 e −x/θ , where 0 < x < ∞ and 0 < θ < ∞. Find the maximum likelihood estimator of ˆθ.
Let X1, X2, · · · , Xn be a random sample from an exponential distribution...
Let X1, X2, · · · , Xn be a random sample from an exponential distribution f(x) = (1/θ)e^(−x/θ) for x ≥ 0. Show that likelihood ratio test of H0 : θ = θ0 against H1 : θ ≠ θ0 is based on the statistic n∑i=1 Xi.
Let X1, . . . , Xn be a random sample from a Bernoulli(θ) distribution, θ...
Let X1, . . . , Xn be a random sample from a Bernoulli(θ) distribution, θ ∈ [0, 1]. Find the MLE of the odds ratio, defined by θ/(1 − θ) and derive its asymptotic distribution.
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function...
Let X1, X2, ..., Xn be a random sample from a distribution with probability density function f(x; θ) = (θ 4/6)x 3 e −θx if 0 < x < ∞ and 0 otherwise where θ > 0 . a. Justify the claim that Y = X1 + X2 + ... + Xn is a complete sufficient statistic for θ. b. Compute E(1/Y ) and find the function of Y which is the unique minimum variance unbiased estimator of θ. b.  Compute...
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the...
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/xlnθ , 1 < x < θ. c) Let Zn = nlnY1. Find the limiting distribution of Zn. d) Let Wn = nln( θ/Yn ). Find the limiting distribution of Wn.
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0,...
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0, θ). (a) Prove that T(X1, · · · , Xn) = X(n) is minimal sufficient for θ. (X(n) is the largest order statistic, i.e., X(n) = max{X1, · · · , Xn}.) (b) In addition, we assume θ ≥ 1. Find a minimal sufficient statistic for θ and justify your answer.
Let X2, ... , Xn denote a random sample from a discrete uniform distribution over the...
Let X2, ... , Xn denote a random sample from a discrete uniform distribution over the integers - θ, - θ + 1, ... , -1, 0, 1, ... ,  θ - 1,  θ, where  θ is a positive integer. What is the maximum likelihood estimator of  θ? A) min[X1, .. , Xn] B) max[X1, .. , Xn] C) -min[X1, .. , Xn​​​​​​​] D) (max[X1, .. , Xn​​​​​​​] - min[X1, .. , Xn​​​​​​​]) / 2 E) max[|X1| , ... , |Xn|]
6. Let X1, X2, ..., Xn be a random sample of a random variable X from...
6. Let X1, X2, ..., Xn be a random sample of a random variable X from a distribution with density f (x)  ( 1)x 0 ≤ x ≤ 1 where θ > -1. Obtain, a) Method of Moments Estimator (MME) of parameter θ. b) Maximum Likelihood Estimator (MLE) of parameter θ. c) A random sample of size 5 yields data x1 = 0.92, x2 = 0.7, x3 = 0.65, x4 = 0.4 and x5 = 0.75. Compute ML Estimate...