Question

We play a game where we throw a coin at most 4 times. If we get...

We play a game where we throw a coin at most 4 times. If we get 2 heads at any point, then we win the game. If we do not get 2 heads after 4 tosses, then we loose the game. For example, HT H, is a winning case, while T HT T is a losing one. We define an indicator random variable X as the win from this game.

You make a decision that after you loose 3 times, not necessarily consecutively but overall, then you quit playing. On average, how many times you will play this game before quitting?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You play a coin flip game where you win NOTHING if the coin comes up heads...
You play a coin flip game where you win NOTHING if the coin comes up heads or win $1,000 if the coin comes up tails. Assume a fair coin is used. Which of the following is TRUE? Group of answer choices a. A risk-seeking person would be willing to accept a cash payment of $500 to forgo (i.e. pass up) playing the game. b. A risk neutral person might accept a cash payment of $400 to forgo (i.e. pass up)...
Suppose that you get the opportunity to play a coin flipping game where if your first...
Suppose that you get the opportunity to play a coin flipping game where if your first flip is a “head”, then you get to flip five more times; otherwise you only get to flip two more times. Assuming that the coin is fair and that each flip is independent, what is the expected total number of “heads”?
You play a game where you first choose a positive integer n and then flip a...
You play a game where you first choose a positive integer n and then flip a fair coin n times. You win a prize if you get exactly 2 heads. How should you choose n to maximize your chance of winning? What is the chance of winning with optimal choice n? There are two equally good choices for the best n. Find both. Hint: Let fn be the probability that you get exactly two heads out of n coin flips....
After losing few bucks on a roulette game at a casino company over the last weekend,...
After losing few bucks on a roulette game at a casino company over the last weekend, Craig was about leaving for studying CFA exam. However, to retain customers in the store, the casino company was offering a promotion: a free cash of $140 or a chance to win the prize of a coin game. The coin game is described as follows: The prize of the game depends on an unbiased coin you toss. If the heads appear, you get $200....
A player is given the choice to play this game. The player flips a coin until...
A player is given the choice to play this game. The player flips a coin until they get the first Heads. Points are awarded based on how many flips it took: 1 flip (the very first flip is Heads): 2 points 2 flips (the second flip was the first Heads): 4 points 3 flips (the third flip was the first Heads): 8 points 4 flips (the fourth flip was the first Heads): 16 points and so on. If the player...
We play a game with a deck of 52 regular playing cards, of which 26 are...
We play a game with a deck of 52 regular playing cards, of which 26 are red and 26 are black. They’re randomly shuffled and placed face down on a table. You have the option of “taking” or “skipping” the top card. If you skip the top card, then that card is revealed and we continue playing with the remaining deck. If you take the top card, then the game ends; you win if the card you took was revealed...
1. Let X be the number of heads in 4 tosses of a fair coin. (a)...
1. Let X be the number of heads in 4 tosses of a fair coin. (a) What is the probability distribution of X? Please show how probability is calculated. (b) What are the mean and variance of X? (c) Consider a game where you win $5 for every head but lose $3 for every tail that appears in 4 tosses of a fair coin. Let the variable Y denote the winnings from this game. Formulate the probability distribution of Y...
Consider a game in which a coin will be flipped three times. For each heads you...
Consider a game in which a coin will be flipped three times. For each heads you will be paid $100. Assume that the coin comes up heads with probability ⅔. a. Construct a table of the possibilities and probabilities in this game. The table below gives you a hint on how to do this and shows you that there are now eight possible outcomes. (3 points) b. Compute the expected value of the game. (2 points) c. How much would...
A fair coin is tossed three times. What is the probability that: a. We get at...
A fair coin is tossed three times. What is the probability that: a. We get at least 1 tail b. The second toss is a tail c. We get no tails. d. We get exactly one head. e. You get more tails than heads.
Consider the following game. You flip an unfair coin, with P(H) = 1/4 and P(T) =...
Consider the following game. You flip an unfair coin, with P(H) = 1/4 and P(T) = 3/4, 100 times. Every time you flip a heads you win $8, and every time you flip a tails you lose $3. Let X be the amount of money you win/lose during the game. Justify your answers and show all work. Compute E(X) andCompute V (X).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT