Question

For the Bernoulli: 1a) Determine the most powerful critical region for testing H0 p=p0 against H1...

For the Bernoulli:

1a) Determine the most powerful critical region for testing H0 p=p0 against H1 p=p1 (p1 > p0) using a random sample of size n.

1b) Find the uniformly most powerful H0 p<p0 against H1 p>p1

Homework Answers

Answer #1

Solution:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . , Xn be a random sample from the normal distribution...
Let X1, X2, . . . , Xn be a random sample from the normal distribution N(µ, 36). (a) Show that a uniformly most powerful critical region for testing H0 : µ = 50 against H1 : µ < 50 is given by C2 = {x : x ≤ c}. Find the values of c for α = 0.10.
Let X1, X2, . . . , X12 denote a random sample of size 12 from...
Let X1, X2, . . . , X12 denote a random sample of size 12 from Poisson distribution with mean θ. a) Use Neyman-Pearson Lemma to show that the critical region defined by (12∑i=1) Xi, ≤2 is a best critical region for testing H0 :θ=1/2 against H1 :θ=1/3. b.) If K(θ) is the power function of this test, find K(1/2) and K(1/3). What is the significance level, the probability of the 1st type error, the probability of the 2nd type...
Consider the test of H0: varience = 15 against H1: variance > 15. What is the...
Consider the test of H0: varience = 15 against H1: variance > 15. What is the critical value for the test statistic chi-square for the significance level alpha = 0.05 and sample size n = 18
Assuming that, in testing H0: μ =20 vs. H1 μ ≠20, you decide on the critical...
Assuming that, in testing H0: μ =20 vs. H1 μ ≠20, you decide on the critical region X bar ≤ 15 and X bar ≥ 25. Assume X is normally distributed, σ 2 = 25, and the following four random values are observed: 9, 20, 15, 11. a) Would you accept or reject H 0 ? b) What level of α is assumed here? c) What probability value would you report? d) What would be the appropriate critical region for...
3. Suppose you are testing H0 : = 10 vs H1 : 6= 10: The sample...
3. Suppose you are testing H0 : = 10 vs H1 : 6= 10: The sample is small (n = 5) and the data come from a normal population. The variance, 2, is unknown. (a) Find the critical value(s) corresponding to = 0:10. (b) You find that t = -1.78. Based on your critical value, what decision do you make regarding the null hypothesis (i.e. do you Reject H0 or Do Not Reject H0)?
7. Suppose you are testing H0 : µ = 10 vs H1 : µ 6= 10....
7. Suppose you are testing H0 : µ = 10 vs H1 : µ 6= 10. The sample is small (n = 5) and the data come from a normal population. The variance, σ 2 , is unknown. (a) Find the critical value(s) corresponding to α = 0.10. (b) You find that t = −1.78. Based on your critical value, what decision do you make regarding the null hypothesis (i.e. do you Reject H0 or Do Not Reject H0)?
1. In order to test H0: µ=40 versus H1: µ > 40, a random sample of...
1. In order to test H0: µ=40 versus H1: µ > 40, a random sample of size n=25 is obtained from a population that is known to be normally distributed with sigma=6. . The researcher decides to test this hypothesis at the α =0.1 level of significance, determine the critical value. b. The sample mean is determined to be x-bar=42.3, compute the test statistic z=??? c. Draw a normal curve that depicts the critical region and declare if the null...
Suppose you want to test H0: u <=100 against H1: u> 100 using a significance level...
Suppose you want to test H0: u <=100 against H1: u> 100 using a significance level of 0.05. The population is normally distributed with a standard deviation of 75. A random sample size of n = 40 will be used. If u = 130, what is the probability of correctly rejecting a false null hypothesis? What is the probability that the test will incorrectly fail to reject a false null hypothesis?
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0 with sample...
Suppose that we are testing H0: μ = μ0 versus H1: μ < μ0 with sample size of n = 25. Calculate bounds on the P -value for the following observed values of the test statistic (use however many decimal places presented in the look-up table. Answers are exact): (h) upper bound upon t0 = -1.3. THE ANSWER IS NOT 0.15 OR 0.05
You want to test H0: µ ≤ 10.00 against H1: π > 10.00 using α =...
You want to test H0: µ ≤ 10.00 against H1: π > 10.00 using α = 0.01, given that a sample of size = 25 found ?̅= 12.9 and s = 6.77. a. What is the estimated standard error of ?̅, assuming that the null hypothesis is correct? b. Should your test statistic be a Z or a T (which, ZSTAT or TSTAT)? c. What is the attained value of the test statistic? d. What is/are the critical values of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT