Question

Show that if two binomial random variables X ∼ Bin(a,p) and Y ∼ Bin(b,p) are independent,...

Show that if two binomial random variables X ∼ Bin(a,p) and Y ∼ Bin(b,p) are independent, then X + Y ∼ Bin(a + b, p), using the technique of moment generating function.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Independent random variables X and Y follow binomial distributions with parameters(n1,θ) and (n2,θ). Let Z =X+Y....
Independent random variables X and Y follow binomial distributions with parameters(n1,θ) and (n2,θ). Let Z =X+Y. What will be the distribution of Z? Hint: Use moment generating function.
Let X and Y be independent Geometric(p) random variables. (a) What is P(X < Y)? (b)...
Let X and Y be independent Geometric(p) random variables. (a) What is P(X < Y)? (b) What is the probability mass function of the minimum min(X, Y )?
If X and Y are independent Binomial random variables, both with parameters n and p, calculate...
If X and Y are independent Binomial random variables, both with parameters n and p, calculate the conditional distribution of X given that X + Y = m. Can you recognize the distribution?
Let ? and ? be two independent random variables with moment generating functions ?x(?) = ?t^2+2t...
Let ? and ? be two independent random variables with moment generating functions ?x(?) = ?t^2+2t and ?Y(?)=?3t^2+t . Determine the moment generating function of ? = ? + 2?. If possible, state the distribution name (and include parameter values) of the distribution of ?.
If X ~ Binomial (n, p) and Y ~ Binomial (m, p) are independent variables with...
If X ~ Binomial (n, p) and Y ~ Binomial (m, p) are independent variables with the same probability p, what is the distribution for Z=X+Y? Is it still a binomial distribution? Write out the pdf for Z if it is binomial, otherwise, explain why it is not. What about W = X-Y, is it a binomial distribution? Write out the pdf for W if it is binomial, otherwise, explain why it is not.
(a) When are two random variables X and Y independent? (b) Show that if E(XY )...
(a) When are two random variables X and Y independent? (b) Show that if E(XY ) = E(X)E(Y ) then V ar(X + Y ) = V ar(X) + V ar(Y ).
1) Let the random variables ? be the sum of independent Poisson distributed random variables, i.e.,...
1) Let the random variables ? be the sum of independent Poisson distributed random variables, i.e., ? = ∑ ? (top) ?=1(bottom) ?? , where ?? is Poisson distributed with mean ?? . (a) Find the moment generating function of ?? . (b) Derive the moment generating function of ?. (c) Hence, find the probability mass function of ?. 2)The moment generating function of the random variable X is given by ??(?) = exp{7(?^(?)) − 7} and that of ?...
Prove that if X and Y are non-negative independent random variables, then X^2 is independent of...
Prove that if X and Y are non-negative independent random variables, then X^2 is independent of Y^2. *** Please prove using independent random variables or variance or linearity of variance, or binomial variance.
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent...
a) let X follow the probability density function f(x):=e^(-x) if x>0, if Y is an independent random variable following an identical distribution f(x):=e^(-x) if x>0, calculate the moment generating function of 2X+3Y b) If X follows a bernoulli(0.5), and Y follows a Binomial(3,0.5), and if X and Y are independent, calculate the probability P(X+Y=3) and P(X=0|X+Y=3)
Let X and Y be independent Geometric(p) random variables. What is P(X<Y)?
Let X and Y be independent Geometric(p) random variables. What is P(X<Y)?