Question

Let X1, X2 , X3 be independent random variables that represent lifetimes (in hours) of three...

Let X1, X2 , X3 be independent random variables that represent lifetimes (in hours) of three key components of a device. Say their respective distributions are exponential with means 1000, 1500, and 1800. Let Y be the minimum of X1, X2, X3 and compute P(Y > 1000).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the...
Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the median of X1, X2, X3 (that is the middle of the three values). Find the conditional CDF of X1, given the event Y = 1/2. Under this conditional distribution, is X1 continuous? Discrete?
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let...
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let S = X1 + X2 + X3 + X4. Suppose we know that S is a Chi-Square random variable with 2 degrees of freedom. What is the distribution of each of the Xi?
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2...
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2 ∼ P oisson(λ2). Find the distribution of Y = X1 + X2.s
Let X1 and X2 be independent Poisson random variables with respective parameters λ1 and λ2. Find...
Let X1 and X2 be independent Poisson random variables with respective parameters λ1 and λ2. Find the conditional probability mass function P(X1 = k | X1 + X2 = n).
Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn....
Let X1,X2,..., Xn be independent random variables that are exponentially distributed with respective parameters λ1,λ2,..., λn. Identify the distribution of the minimum V = min{X1,X2,...,Xn}.
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having...
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having finite mean E[xi] and variance Var(xi). a)calculate the var (x1+x2) b)calculate the var(E[xi]) c) if n-> infinite, what is Var(E[xi])?
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10...
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10 and variance 16. in addition, Suppose that Y1, Y2, Y3, Y4, and Y5are independent and identically distributed random variables with mean 15 and variance 25. Suppose further that X1, X2, X3, and X4 and Y1, Y2, Y3, Y4, and Y5are independent. Find Cov[bar{X} + bar{Y} + 10, 2bar{X} - bar{Y}], where bar{X} is the sample mean of X1, X2, X3, and X4 and bar{Y}...
If X1 and X2 are independent exponential random variables with respective parameters λ1 and λ2, find...
If X1 and X2 are independent exponential random variables with respective parameters λ1 and λ2, find the distribution of Z = min{X1, X2}.
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find...
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find the distribution of Z = min{X1, X2}.
Suppose that X1,X2 and X3 are independent random variables with common mean E(Xi) = μ and...
Suppose that X1,X2 and X3 are independent random variables with common mean E(Xi) = μ and variance Var(Xi) = σ2. Let V= X2−X3 and W = X1− 2X2 + X3. (a) Find E(V) and E(W). (b) Find Var(V) and Var(W). (c) Find Cov(V,W). (d) Find the correlation coefficient ρ(V,W). Are V and W independent?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT